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INVITED PAPER 

MULTIVARIATE ADAPTIVE REGRESSION SPLINES 

Stanford University 

A new method is presented for flexible regression modeling of high 
dimensional data. The model takes the form of an expansion in product 
spline basis functions, where the number of basis functions as well as the 
parameters associated with each one (product degree and knot locations) 
are automatically determined by the data. This procedure is motivated by 
the recursive partitioning approach to regression and shares its attractive 
properties. Unlike recursive partitioning, however, this method produces 
continuous models with continuous derivatives. It, has more power and 
flexibility to model relationships that are nearly additive or involve interac- 
tions in at most a few variables. In addition, the model can be represented 
in a form that separately identifies the additive contributions and those 
associated with the different multivariable interactions. 

1. Introduction. A problem common to many disciplines is that of ade- 
quately approximating a function of several to many variables, given only the 
value of the function (often perturbed by noise) at  various points in the 
dependent variable space. Research on this problem occurs in applied mathe- 
matics (multivariate function approximation), ~tatistics (nonparametric multi- 
ple regression) and in computer science and engineering (statistical learning 
neural networks). The goal is to model the dependence of a response variable y 
on one or more predictor variables xl , .  . . ,x, given realizations (data) 
{yi, xli , .  . . ,xni):. The system that generated the data is presumed to be 
described by 

over some domain (x,, . . . ,x,) E D c R n  containing the data. The single 
valued deterministic function f ,  of its n-dimensional argument, captures the 
joint predictive relationship of y on x,, . . . ,x,. The additive stochastic compo- 
nent E, whose expected value is defined to be zero, usually reflects the 
dependence of y on quantities other than x,, . . . ,x, that are neither con- 
trolled nor'observed. The aim of regression analysis is to use the data to 
construct a function f(xl, . . . ,x,) that can serve as a reasonable approxima- 
tion to f(x,, . . . ,x,) over the domain D of interest. 

Received December 1988; revised June 1990. 
'~esearch supported jointly by the U.S. Department of Energy under Contract AC03-

76SF00515 and U.S. National Security Agency under Grant MDA904-88-M-2029. 
: AMS 1980 subject classifications. Primary 62502, 65D07, 65D10, 65D15, 68T05, 93314; 
secondary 62H30,68T10, 90A19, 93C35, 93Ell .  

Key words and phrases. Nonparametric multiple regression, multivariable function approxima- 
tion, statistical learning neural networks, multivariate smoothing, splines, recursive partitioning, 
AID, CART. 

1 




2 J. H. FRIEDMAN 

The notion of reasonableness depends on the purpose for which the approxi- 
mation is to be used. In nearly all applications however accuracy is important. 
Lack of accuracy is often defined by the integral error 

or the expected error 

Here x = (x,, . . . ,x,), A is some measure of distance and w(x) is a possible 
weight function. The integral error (2) characterizes the average accuracy of 
the approximation over the entire domain of interest whereas the expected 
error (3) reflects average accuracy only on the design points x,, . . . ,x,. In 
high dimensional settings especially, low integral error is generally much more 
difficult to achieve than low expected error. 

If the sole purpose of the regression analysis is to obtain a rule for 
predicting future values of the response y, given values for the covariates 
(x,, . . . ,x,), then accuracy is the only important virtue of the model. If future 
joint covariate values x can only be realized at  the design points x,, . . . ,x, 
[with probabilities w(xi)], then the expected error (3) is the appropriate 
measure; otherwise the integral error (2) is more relevant. Often, however, one 
wants to use f^ to try to understand the properties of the true underlying 
function f (1) and thereby the system that generated the data. In this case the 
interpretability of the representation of the model is also very important. 
Depending on the application, other desirable properties of the approximation 
might include rapid computability and smoothness; that is, f be a smooth 
function of its n-dimensional argument and at  least its low order derivatives 
exist everywhere in D. 

This paper presents a new method of flexible nonparametric regression 
modeling that attempts to meet the previously outlined objectives. It appears 
to have the potential to be a substantial improvement over existing methodol- 
ogy in settings involving moderate sample sizes, 50 I N I 1000, and moderate 
to high dimension, 3 5 n 5 20. It can be viewed as either a generalization of 
the recursive partitioning regression strategy [Morgan and Sonquist (1963) 
and Breiman, Friedman, Olshen and Stone (1984)], or as a generalization of 
the additiv; modeling approach of Friedman and Silverman (1989). Its imme- 
diate ancestor is discussed in Friedman (1988). Although the procedure de- 
scribed here is somewhat different from that in Friedman (1988), the two 
procedures have a lot in common and much of the associated discussion of that 
earlier procedure is directly relevant to the one described here. Some of this 
common discussion material is therefore repeated in this paper for complete- 
ness. 

2. Existing methodology. This section provides a brief overview of some 
existing methodology for multivariate regression modeling. The intent here is 
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to highlight some of the difficulties associated with each of the methods when 
applied in high dimensional settings in order to motivate the new procedure 
described later. I t  should be borne in mind however that many of these 
methods have met with considerable success in a variety of applications. 

2.1. Global parametric modeling. Function approximation in high dimen- 
sional settings has (in the past) been pursued mainly in statistics. The princi- 
pal approach has been to fit (usually a simple) parametric function g(x({aj)f) 
to the training data most often by least-squares. That is, 

where the parameter estimates are given by 

The most commonly used parametrization is the linear function 
D 


Sometimes additional terms, that are preselected functions of the original 
variables (such as polynomials) are also included in the model. This parametric 
approach has limited flexibility and is likely to produce accurate approxima- 
tions only when the form of the true underlying function f(x) (1) is close to 
the prespecified parametric one (4). On the other hand, simple parametric 
models have the virtue of requiring relatively few data points, they are easy to 
interpret and rapidly computable. If the stochastic component E (1) is large 
compared to f(x), then the systematic error associated with model misspecifi- 
cation may not be the most serious problem. 

2.2. Nonparametric modeling. In low dimensional settings ( n < 2), global 
parametric modeling has been successfully generalized using three (related) 
paradigms-piecewise and local parametric fitting and roughness penalty 
methods. The basic idea of piecewise parametric fitting is to approximate f by 
several simple parametric functions (usually low order polynomials) each 
defined over a different subregion of the domain D. The approximation is 
constrained to be everywhere continuous and sometimes have continuous low 
order derivatives as well. The tradeoff between smoothness and flexibility of 
the approximation $ is controlled by the number of subregions (knots) and the 
lowest order derivative allowed to be discontinuous at subregion boundaries. 
The most popular piecewise polynomial fitting procedures are based on splines, 
where the parametric functions are taken to be polynomials of degree q and 
derivatives to order q - 1 are required to be continuous (q = 3 is the most 
popular choice). The procedure is implemented by constructing a set of (glob- 
ally defined) basis functions that span the space of q th  order spline approxi- 
mations and fitting the coefficients of the basis function expansion to the data 
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by ordinary least-squares. For example, in the univariate case (n = 1) with 
K + 1regions delineated by K points on the real line (knots), one such basis is 
represented by the functions 

where { t k } rare the knot locations. (Here the subscript + indicates a value of 
zero for negative values of the argument.) This is known as the truncated 
power basis and is one of many that span the space of q-degree spline 
functions of dimension K + q + 1.[See de Boor (1978) for a general review of 
splines and Shumacker (1976, 1984) for reviews of some two-dimensional 
( n = 2) extensions.] 

The direct extension of piecewise parametric modeling to higher dimensions 
(n > 2) is straightforward in principle but difficult in'practice. These difficul- 
ties are related to the so called curse-of-dimensionality, a phrase coined by 
Bellman (1961) to express the fact that exponentially increasing numbers of 
(data) points are needed to densely populate Euclidean spaces of increasing 
dimension. In the case of spline approximations, the subregions are usually 
constructed as tensor products of K + 1 intervals (defined by K knots) over 
the n variables. The corresponding global basis is the tensor product over the 
K + q + 1basis functions associated with each variable (6). This gives rise to 
( K  + q + l )n  coefficients to be estimated from the data. Even with a very 
coarse grid (small K), a very large data sample is required. 

Local parametric approximations (smoothers) take the form 

where g is a simple parametric function (4). Unlike global parametric approxi- 
mations, here the parameter values are generally different at each evaluation 
point x and are obtained by locally weighted least-squares fitting 

The weight function w(x, x') (of 2n variables) is chosen to place the dominant 
mass on points x '  close to x. The properties of the approximation are mostly 
determined by the choice of w and to a lesser extent by the particular 
parametric function g used. The most commonly studied g is the simple 
constant g(xla) = a [Parzen (1962), Shepard (1964), Bozzini and Lenarduzzi 
(1985)l. Cleveland (1979) suggested that local linear fitting (5) produces supe- 
rior results, especially near the edges and Cleveland and Devlin (1988) suggest 
local fitting of quadratic functions. Stone (1977) shows that, asymptotically, 
higher order polynomials can have superior convergence rates when used with 
simple weight functions (see later), depending on the continuity of properties 
of f (1).

he difficulty with applying local parametric methods in higher dimensions 
lies with the choice of an appropriate weight function w (7) for the problem at  
hand. This strongly depends on f (1) and thus is generally unknown. Asymp- 
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totically any weight function that places dominant mass in a (shrinking) 
convex region centered at x will work. This motivates the most common choice 

with lx - x'l being a (possibly) weighted distance between x and x', s(x) is a 
scale factor (bandwidth) and K is a (kernel) function of a single argument. The 
kernel is usually chosen so that its absolute value decreases with increasing 
value of its argument. Commonly used scale functions are a constant s(x) = so  
(kernel smoothing) or s(x) = so/lj(x) (near neighbor smoothing), where lj(x) is 
some estimate of the local density of the design points. In low dimensional 
(n  < 2) settings, this approximation of the weight function w of 2n variables 
by a function K of a single variable (8), controlled by a single parameter (so), 
is generally not too serious since asymptotic conditions can be realized without 
requiring gargantuan sample sizes. This is not the case in higher dimensions. 
The problem with a kernel based on interpoint distance (8) is that the volume 
of the corresponding sphere in n-space grows as its radius to the n th  power. 
Therefore to ensure that w (8) places adequate mass on enough data points to 
control the variance of f(x), the bandwidth s(x) will necessarily have to be 
very large, incurring high bias. 

Roughness penalty approximations are defined by 

f (x )  = argmin [y, - g(x,) I2  + AR(g) i . &' i= l  

Here R(g) is a functional that increases with increasing roughness of the 
function g(x). The minimization is performed over all g for which R(g) is 
defined. The parameter A regulates the tradeoff between the roughness of g 
and its fidelity to the data. The most studied roughness penalty is the 
integrated squared Laplacian 

leading to Laplacian smoothing (thin-plate) spline approximations for n I3. 
For n > 3, the general thin-plate spline penalty has a more complex form 
involving derivatives of higher order than two. [See Wahba (1990), Section 2.4.1 
The properties of roughness penalty methods are similar to those of kernel 
methods (7), (8), using an appropriate kernel function K (8) with A regulating 
the bandwidth s(x). They therefore encounter the same basic limitations in 
high dimensional settings. 

2.3. Low dimensional expansions. The ability of the nonparametric meth- 
ods to often adequately approximate functions of a low dimensional argument, 
coupled with their corresponding inability in higher dimensions, has motivated 
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approximations that take the,form of expansions in low dimensional functions 


Here each z j  is comprised of a small (different) preselected subset of 
{x,, . . . ,x,). Thus, a function of an n-dimensional argument is approximated 
by J functions, each of a low ( 5 2) dimensional argument. [Note that any 
(original) variable may appear in more than one subset zj. Extra conditions 
(such as orthogonality) can be imposed to resolve any identifiability problems.] 
After selecting the variable subsets {zj);', the corresponding functions esti- 
mates {gj(zj))i/ are obtained by nonparametric methods, for example, using 
least-squares 

with smoothness constraints imposed on the gj through the particular non- 
parametric method used to estimate them. 

In the case of piecewise polynomials (splines) a corresponding basis is 
constructed for each individual z j  and the solution is obtained as a global 
least-squares fit of the response y on the union of all such basis functions 
[Stone and Koo (1985)l. With roughness penalty methods the formulation 
becomes 

(12) 	 f ( x )  - argmin C yi - E
J 

gj(zij)) + C hjR(gj) 
( g j )  { i r l [  j=l I) j = 1  I 

These are referred to as interaction splines [Barry (1986), Wahba (19861, Gu, 
Bates, Chen and Wahba (1990), Gu and Wahba (1991) and Chen, Gu and 
Wahba (1989)l. 

Any low dimensional nonparametric function estimator can be used 
in conjunction with the backfitting algorithm to solve (11) [Friedman 
and Stuetzle (1980, Breiman and Friedman (1985) and Buja, Hastie and 
Tibshirani (1989)l. The procedure iteratively reestimates gj(zj) by 

until convergence. Smoothness is imposed on the kj by the particular estima- 
tor employed. For example, if each iterated function estimate is obtained using 
Laplacian smoothing splines (9) with parameter hj (12), then the backfitting 
algorithm produces the solutions to (12). [See Buja, Hastie and Tibshirani 
(1989)l. Hastie and Tibshirani (1986) generalize the backfitting algorithm to 
obtain solutions for criteria other than squared-error loss. 
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The most extensively studied low dimensional expansion has been the 
additive model 

n 


(13) f (XI,= C &(xj) 9 

j =  1 

since nonadaptive smoothers work best for one-dimensional functions and 
there are only n of them (at most) that can enter. Also, in many applications 
the true underlying function f (1) can be approximated fairly well by an 
additive function. 

Nonparametric function estimation based on low dimensional expansions is 
an important step forward and (especially for additive modeling) has met with 
considerable practical success [see Buja, Hastie and Tibshirani (1989)l. As a 
general method for estimating functions of many variables, this approach has 
some limitations. The abilities of nonadaptive nonparametric smoothers gener- 
ally limit the expansion functions to low dimensionality. Performance (and 
computational) considerations limit the number of low dimensional functions 
to a small subset of all those that could potentially be entered. For example, 
there are n(n + 1)/2 possible univariate and bivariate functions. A good 
subset will depend on the true underlying function f (1) and is often un- 
known. Also, each expansion function has a corresponding smoothing parame- 
ter causing the entire procedure to be defined by many such parameters. A 
good set of values for all these parameters is seldom known for any particular 
application since they depend on f (1). Automatic selection based on minimiz- 
ing a model selection criterion generally requires a multiparameter numerical 
optimization which is inherently difficult and computationally consuming. Also 
the properties of estimates based on the simultaneous estimation of a large 
number of smoothing parameters are largely unknown, although progress is 
being made [see Gu and Wahba (1988)l. 

2.4. Adaptive computation. Strategies that attempt to approximate gen- 
eral functions in high dimensionality are based on adaptive computation. An 
adaptive computation is one that dynamically adjusts its strategy to take into 
account the behavior of the particular problem to be solved, for example, the 
behavior of the function to be approximated. Adaptive algorithms have been in 
long use in numerical quadrature [see Lyness (1970); Friedman and Wright 
(1981)l. In statistics, adaptive algorithms for function approximation have 
been developed based on two paradigms, recursive partitioning [Morgan and 
Sonquist (1963), Breiman, Friedman, Olshen and Stone (198411 and projection 
pursuit [Friedman and Stuetzle (1981), Friedman, Grosse and Stuetzle (1983) 
and Friedman, (1985)l. 

2.4.1. PROJECTION Projecticn pursuit uses an approx- PURSUIT REGRESSION. 

imation of the form 
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that is, additive functions of linear combinations of the variables. The univari- 
ate functions fm  are required to be smooth but are otherwise arbitrary. These 
functions and the corresponding coefficients of the linear combinations appear- 
ing in their arguments, are jointly optimized to produce a good fit to the data 
based on some distance (between functions) criterion-usually squared-error 
loss. Projection pursuit regression can be viewed as a low dimensional expan- 
sion method where the (one-dimensional) arguments are not prespecified, but 
instead are adjusted to best fit the data. It can be shown [see Diaconis and 
Shahshahani (1984)l that any smooth function of n variables can be repre- 
sented by (14) for large enough M. The effectiveness of the approach lies in 
the fact that even for small to moderate M, many classes of functions can be 
closely fit by approximations of this form [see Donoho and Johnstone (1989)l. 
Another advantage of projection pursuit approximations'is affine equivariance. 
That is, the solution is invariant under any nonsingular affine transformation 
(rotation and scaling) of the original explanatory variables. It is the only 
general method suggested for practical use that seems to possess this property. 
Projection pursuit solutions have some interpretive value (for small M )  in that 
one can inspect the solution functions fm and the corresponding loadings in 
the linear combination vectors. Evaluation of the resulting approximation is 
computationally fast. Disadvantages of the projection pursuit approach are 
that there exist some simple functions that require large M for good approxi- 
mation [see Huber (198511, it is difficult to separate the additive from the 
interaction effects associated with the variable dependencies, interpretation is 
difficult for large M and the approximation is computationally time consuming 
to construct. 

2.4.2. RECURSIVEPARTITIONING REGRESSION. The recursive partitioning re- 
gression model takes the form 

(15) if x E R m ,  then f ( x ) = g m ( x ~ { a j ) ~ ) .  

Here { R m } yare disjoint subregions representing a partition of D. The func- 
tions gm are generally taken to be of quite simple parametric form. The most 
common is a constant function 

[Morgan and Sunquist (1963) and Breiman, Friedman, Olshen and Stone 
(1984)l. Linear functions (5) have also been proposed [Breiman and Meisel 
(1976) and Friedman (1979)], but they have not seen much use (see later). The 
goal is to use the data to simultaneously estimate a good set of subregions and 
the parameters associated with the separate functions in each subregion. 
Continuity at  subregion boundaries is not enforced. 

The partitioning is accomplished through the recursive splitting of previous 
subregions. The starting region is the entire domain D. At each stage of the 
partitioning all existing subregions are each optimally split into two (daughter) 
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subregions. The eligible splits of a region R into two daughter regions R,  and 
R,  take the form 

if x E R: then 
if x, I t, thenx  E Rl 

else x E R ,  
end if. 

Here v labels one of the covariates and t is a value on that variable. The split 
is jointly optimized over 1Iv r n and - m  It r ca using a goodness-of-fit 
criterion on the resulting approximation (15). This procedure generates hyper- 
rectangular axis oriented subregions. The recursive subdivision is continued 
until a large number of subregions are generated. The subregions are then 
recombined in a reverse manner until an optimal set is reached, based on a 
criterion that penalizes both for lack-of-fit and increasing number of regions 
[see Breiman, Friedman, Olshen and Stone (1984)l. 

Recursive partitioning is a powerful paradigm, especially if the simple 
piecewise constant approximation (16) is used. It has the ability to exploit low 
local dimensionality of functions. That is, even though the function f (1)may 
strongly depend on a large number of variables globally, in any local region the 
dependence is strong on only a few of them. These few variables may be 
different in different regions. This ability comes from the recursive nature of 
the partitioning which causes it to become more and more local as the splitting 
proceeds. Variables that locally have less influence on the response are less 
likely to be used for splitting. This gives rise to a local variable subset 
selection. Global variable subset selection emerges as a natural consequence. 
Recursive partitioning (15) based on linear functions (5) basically lacks this 
(local) variable subset selection feature. This tends to limit its power (and 
interpretability) and is probably the main reason contributing to its lack of 
popularity. 

Another property that recursive partitioning regression exploits is the 
marginal consequences of interaction effects. That is, a local intrinsic depen- 
dence on several variables, when best approximated by an additive function 
(13), does not lead to a constant model. This is nearly always the case. 

Recursive partitioning models using piecewise constant approximations (15), 
(16) are fairly interpretable owing to the fact that they are very simple and can 
be represented by a binary tree. [See Breiman, Friedman, Olshen and Stone 
(1984) and Section 3.1.1 They are also fairly rapid to construct and especially 
rapid to evaluate. 

Although recursive partitioning is the most adaptive of the methods for 
multivariate function approximation, it suffers from some fairly severe restric- 
tions that limit its effectiveness. Foremost among these is that the approximat- 
ing function is discontinuous at  the subregion boundaries. This is more than a 
cosmetic problem. It severely limits the accuracy of the approximation, espe- 
cially when the true underlying function is continuous. Even imposing conti- 
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nuity only of the function (as opposed to derivatives of low order) is usually 
enough to dramatically increase approximation accuracy. 

Another problem with recursive partitioning is that certain types of simple 
functions are difficult to apprdximate. These include linear functions with 
more than a few nonzero coefficients [with the piecewise constant approxima- 
tion (16)] and additive functions (13) in more than a few variables (piecewise 
constant or piecewise linear approximation). More generally, it has difficulty 
when the dominant interactions involve a small fraction of the total number of 
variables. In addition, one cannot discern from the representation of the model 
whether the approximating function is close to a simple one, such as linear or 
additive, or whether it involves complex interactions among the variables. 

3. Adaptive regression splines. This section describes the multivariate 
adaptive regression spline (MARS) approach to multivariate nonparametric 
regression. The goal of this procedure is to overcome some of the limitations 
associated with existing methodology outlined earlier. I t  is most easily under- 
stood through its connections with recursive partitioning regression. I t  will 
therefore be developed here as a series of generalizations to that procedure. 

3.1. Recursive partitioning regression revisited. Recursive partitioning re- 
gression is generally viewed as a geometrical procedure. This framework 
provides the best intuitive insight into its properties and was the point of view 
adopted in Section 2.4.2. It  can, however, also be viewed in a more conven- 
tional light as a stepwise regression procedure. The idea is to produce an 
equivalent model to (15), (16) by replacing the geometrical concepts of regions 
and splitting with the arithmetic notions of adding and multiplying. 

The starting point is to cast the approximation (15), (16) in the form of an 
expansion in a set of basis functions 

The basis functions B ,  take the form 

where I is an indicator function having the value one if its argument is true 
and zero otherwise. The {a,),M are the coefficients of the expansion whose 
values are jointly adjusted to give the best fit to the data. The {R,},M are the 
same subregions of the covariate space as in (151, (16). Since these regions are 
disjoint only one basis function is nonzero for any point x so that (171, (18) is 
equivalent to (15), (16). 

The aim of recursive partitioning is not only to adjust the coefficient values 
to best fit the data, but also to derive a good set of basis functions (subregions) 
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based on the data at  hand. Let H [ r ]  be a step function indicating a positive 
argument 

1 i f r 2 0 ,  
0 otherwise, 

and let LOF(g) be a procedure that computes the lack-of-fit of a function g(x) 
to the data. Then the forward stepwise regression procedure presented in 
Algorithm 1 is equivalent to the recursive partitioning strategy outlined in 
Section 2.4.2. 

Algorithm 1(recursive partitioning) 

B,(x) + 1 
For M = 2 to M,, do: lof* + 

For m = 1to M - 1do: 
For v = 1to n do: 

For t E {xVjlBm(xj)> 0) 
g + Ci,,aiBi(x) + a.,B,(x)H[+(x, - t)l + aMBm(x)H[-(x, - t)l 
lof minal,. . . ,a~ LOF(g)+ 

if lof < lof*, then lof* + lof; m* + m; v* + v; t* + t end if 
end for 

end for 
end for 
BM(x)+ B,*(x)H[-(x,* - t*)I 
B,*(x) + B,*(x)H[+(x,* - t*)l 

end for 
end algorithm 

The first line in Algorithm 1is equivalent to setting the initial region to the 
entire domain. The first For loop iterates the splitting procedure with M,, 
being the final number of regions (basis functions). The next three (nested) 
loops perform an optimization to select a basis function B,* (already in the 
model), a predictor variable xu, and a split point t*. The quantity being 
minimized is the lack-of-fit of a model with B,* being replaced by its product 
with the step function H[+(x,* - t*)] and with the addition of a new 
basis function which is the product of B,* and the reflected step function 
H[-(xu* - t*)]. This is equivalent to splitting the corresponding region R,, 
on variable v* at  split point t". Note that the minimization of LOF(g) with 
respect to the expansion coefficients (line 7) is a linear regression of the 
response on the current basis function set. 

The basis functions produced by Algorithm 1have the form 
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FIG.1. A binary tree representing a recursive partitioning regression model with the associated 
basis functions. 

The quantity K, is the number of splits that gave rise to B,, whereas the 
arguments of the step functions contain the parameters associated with each 
of these splits. The quantities s,, in (20) take on values k1and indicate the 
(right/left) sense of the associated step function. The v(k, m ) label the predic- 
tor variables and the t,, represent values on the corresponding variables. 
Owing to the forward stepwise (recursive) nature of the procedure the parame- 
ters for all the basis functions can be represented on a binary tree that reflects 
the partitioning history [see Breiman, Friedman, Olshen and Stone (1984)l. 
Figure 1 shows a possible result of running Algorithm 1 in this binary tree 
representation, along with the corresponding basis functions. The internal 
nodes of the binary tree represent the step functions and the terminal nodes 
represent the final basis functions. Below each internal node are listed the 
variable u and location t associated with the step function represented by that 
node. The sense of the step function s is indicated by descending either left or 
right from the node. Each basis function (20) is the product of the step 
functions encountered in a traversal of the tree starting at  the root and ending 
at its corresponding terminal node. 

With most forward stepwise regression procedures it makes sense to follow 
them by a backwards stepwise procedure to remove basis functions that no 
longer contribute sufficiently to the accuracy of the fit. This is especially true 
in the case of recursive partitioning. In fact the strategy here is to deliberately 
overfit the data with an excessively large model and then to trim it back to 
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proper size with a backwards stepwise strategy [see Breiman, Friedman, 
Olshen and Stone (1984)l. 

In the case of recursive partitioning, the usual straightforward one at a time 
stepwise term (basis function) deletion strategy does not work. Each basis 
function represents a disjoint subregion and removing it leaves a hole in the 
predictor variable space within which the model will predict a zero response 
value. Therefore it is unlikely that any term (basis function) can be removed 
without seriously degrading the quality of the fit. To overcome this, a back- 
ward stepwise strategy for recursive partitioning models must delete (sibling) 
regions in adjacent pairs by merging them into a single (parent) region in 
roughly the inverse splitting order. One must delete splits rather than regions 
(basis functions) in the backwards stepwise strategy. One method for doing 
this is the optimal complexity tree pruning algorithm described in Breiman, 
Friedman, Olshen and Stone (1984). 

3.2. Continuity. As noted in Section 2.4.2, a fundamental limitation of 
recursive partitioning models is lack of continuity. The models produced by 
(15), (16) are piecewise constant and sharply discontinuous at  subregion 
boundaries. This lack of continuity severely limits the accuracy of the approxi- 
mation. It is possible, however, to make a minor modification to Algorithm 1 
which will cause it to produce continuous models with continuous derivatives. 

The only aspect of Algorithm 1that introduces discontinuity into the model 
is the use of the step function (19) as its central ingredient. If the step function 
were replaced by a continuous function of the same argument everywhere it 
appears (lines 6, 12 and 13), Algorithm 1would produce continuous models. 
The choice for a continuous function to replace the step function (19) is guided 
by the fact that the step function as used in Algorithm 1is a special case of a 
spline basis function (6). 

The one-sided truncated power basis functions for representing q th order 
splines are 

where t is the knot location, q is the order of the spline and the subscript 
indicates the positive part of the argument. For q > 0, the spline approxima- 
tion is continuous and has q - 1 continuous derivatives. A two-sided trun- 
cated power basis is a mixture of functions of the form 

The step functions appearing in Algorithm 1 are seen to be two-sided trun- 
cated power basis functions for q = 0 splines. 

The usual method for generalizing spline fitting to higher dimensions is to 
employ basis functions that are tensor products of univariate spline functions 
(see Section 2.2). Using the two-sided truncated power basis for the univariate 
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functions, these multivariate spline basis functions take the form 

along with products involving the truncated power functions with polynomials 
of lower order than q. (Note that s k m= 1.)Comparing (20) with (22), we see 
that the basis functions (20) produced by recursive partitioning are a subset of 
a complete tensor product (q = 0) spline basis with knots at every (distinct) 
marginal data point value. Thus, recursive partitioning can be viewed as a 
forward/backward stepwise regression procedure for selecting a (relatively 
very small) subset of regressor functions from this (very large) complete basis. 

Although replacing the step function (19) by a q > 0 truncated power spline 
basis function (21) in Algorithm 1will produce continuous models (with q - 1 
continuous derivatives), the resulting basis will not reduce to a set of tensor 
product spline basis functions (as was the case for q = 0). Algorithm 1permits 
multiple splitting on the same variable along a single path of the binary tree 
(see Figure 1). Therefore the final basis functions can each have several factors 
involving the same variable in their product. For q > 0, this gives rise to 
dependencies of higher power than q on individual variables. Products of 
univariate spline functions on the same variable do not give rise to a (uni- 
variate) spline function of the same order, except for the special case of q = 0 
(21). Each factor in a tensor product spline basis function must involve a 
different variable and thereby cannot produce dependencies on individual 
variables of power greater than q. Owing to the many desirable properties of 
splines for function approximation [de Boor (1978)l it would be nice for a 
continuous analog of recursive partitioning to also produce them. Since per- 
mitting repeated (nested) splits on the same variable is an essential aspect 
contributing to the power of recursive partitioning, we cannot simply prohibit 
it in a continuous generalization. A natural resolution to this dilemma emerges 
from the considerations in Section 3.3. 

3.3. A further generalization. Besides lack of continuity, another problem 
that plagues recursive partitioning regression models is their inability to 
provide good approximations to certain classes of simple often-occurring func- 
tions. These are functions that either have no strong interaction effects, or 
strong interactions each involving at  most a few of the predictor variables. 
Linear (5) and additive (13) functions are among those in this class. From the 
geometric point of view, this can be regarded as a limitation of the axis-ori- 
ented hyperrectangular shape of the generated regions. These difficult func- 
tions (for recursive partitioning) have isopleths that tend to be oriented at 
oblique angles to the coordinate axes, thereby requiring a great many axis-ori- 
ented hyperrectangular regions to capture the functional dependence. 

One can also understand this phenomenon by viewing recursive partitioning 
as a stepwise regression procedure (Algorithm 1). I t  is in this framework that a 
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natural solution to this problem emerges. The goal, in this context, is to find a 
good set of basis functions for the approximation. The final model is then 
obtained by projecting the data onto this basis. The bias associated with this 
procedure is just the average distahce of the true underlying function f (1) 
from its projection onto the space spanned by the derived basis functions. The 
variance of the model estimate is directly proportional to the dimensionality of 
this space, namely the number of basis functions used. In order to achieve 
good accuracy (small bias and variance) one must derive a small set of basis 
functions that are close to the true underlying function in the previous sense 
(small bias). 

The problem with the basis derived through recursive partitioning (20), or 
the continuous analog (221, is that it tends to mostly involve functions of more 
than a few variables (higher order interactions). Each execution of the outer 
loop in Algorithm 1(split) removes a basis function of lower interaction order 
and replaces it by two functions, each with interaction order one level higher, 
unless it happens to split on a variable already in the product. Thus, as the 
partitioning proceeds, the average interaction level of the basis function set 
steadily increases. One simple consequence is that recursive partitioning can- 
not produce an additive model in more than one variable. The overriding effect 
is that such a basis involving high order interactions among the variables 
cannot provide a good approximation to functions with at most low order 
interactions, unless a large number of basis functions are used. This is the 
regression analog of trying to approximate with rectangular regions, functions 
that have isopleths oblique to the axes. 

As noted in Section 3.2, recursive partitioning (q  = 0) can be regarded as a 
stepwise procedure for selecting a small subset of basis functions from a very 
large complete tensor product spline basis. The problem is that all members of 
this complete basis are not eligible for selection, namely many of those that 
involve only a few of the variables. The problem can be remedied by enlarging 
the eligible set to include all members of the complete tensor product basis. 
This in turn can be accomplished by a simple modification to Algorithm 1,or 
its continuous analog (Section 3.2). 

The central operation in Algorithm 1(lines 6, 12, 13) is to delete an existing 
(parent) basis function and replace it by both its product with a univariate 
truncated power spline basis function and the corresponding reflected trun- 
cated power function. The modification proposed here involves simply not 
removing the parent basis function. That is, the number of basis functions 
increases by two as a result of each iteration of the outer loop (split). All basis 
functions (parent and daughters) are eligible for further splitting. Note that 
this includes Bl(x) = 1 (line 1). Basis functions involving only one variable 
(additive terms) can be produced by choosing Bl(x) as the parent. Two-variable 
basis functions are produced by choosing a single variable basis function as the 
parent and so on. Since no restrictions are placed on the choice of a parent 
term, the modified procedure is able to produce models involving either high or 
low order interactions or both. I t  can produce purely additive models (13) by 
always choosing Bl(x) as the parent. 
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This strategy of not removing a parent basis function, after it has been 
selected for splitting, also resolves the dilemma presented in the last paragraph 
of Section 3.2. A prohibition against more than one split on the same variable 
along the path leading to a single basis function can now be enforced without 
limiting the power of the procedure. Repeated splitting on the same variable is 
used by (q = 0)recursive partitioning to attempt to approximate local additive 
dependencies. This can now be directly accomplished by repeated selection of 
the same parent for splitting (on the same variable) thereby introducing 
additional terms but not increasing the depth of the splitting. There is no 
longer a need for repeated factors associated with the same variable in a single 
basis function. 

Combining the considerations of this and the preceding section leads to a 
generalization of recursive partitioning regression involving the following 
modifications to Algorithm 1: 

1. Replacing the step function H[_+(x- t)] by a truncated power spline 
function [ k(x - t)]Q+. 

2. Not removing the parent basis function 	 B,,(x) after it is split, thereby 
making it and both its daughters eligible for further splitting. 

3. Restricting 	 the product associated with each basis function to factors 
involving distinct predictor variables. 

An important consideration in this generalization of recursive partitioning 
is the degree of continuity to impose on the solution; that is, the choice of q 
(20,  (22). There are both statistical and computational trade-offs. These are 
discussed in Sections 3.7 and 3.9, where it is argued that only continuity of the 
approximating function and its first derivative should be imposed. Further- 
more, the proposed implementing strategy is to employ q = 1 splines in the 
analog of Algorithm 1and then to use the resulting solution (with discontinu- 
ous derivatives) to derive a continuous derivative solution. The detailed discus- 
sion of this is deferred to Section 3.7. 

3.4. MARS algorithm. Algorithm 2 implements the forward stepwise part 
of the MARS strategy by incorporating the modifications to recursive partition- 
ing (Algorithm 1) outlined before. Truncated power basis functions (q = 1) are 
substituted for step functions in lines 6, 12 and 13. The parent basis function 
is included in the modified model in line 6 and remains in the updated model 
through the logic of lines 12-14. Basis function products are constrained to 
contain factors involving distinct variables by the control loop over the vari- 
ables in line 4 [see (20), (22)l. This algorithm produces M,,q = 1 tensor 
product (truncated power) spline basis functions that are a subset of the 
complete tensor product basis with knots located at  all distinct marginal data 
values. As with recursive partitioning, this basis set is then subjected to a 
backwards stepwise deletion strategy to produce a final set of basis functions. 
The knot locations associated with this approximation are then used to derive 
a piecewise cubic basis, with continuous first derivatives (Section 3.7), thereby 
producing the final (continuous derivative) model. 
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Algorithm 2 (MARS-forward stepwise) 

Bl(x) +- 1; M +- 2 
Loop until M > M,,: lof * +- co 

For m = 1to M - 1do: 
d 

For v GE {v(k, m)l l  s k IK,) 
For t E {xUjlBm(xj)> 0) 

g +- C:~=;la~B,(x)+ aMBm(x)[+(x,- t)l++ aM+lBm(x)[-(x, - t)l+ 
'of +- minal,.. . , a ~ + ~LOF(g)

if lof < lof*, then lof* +- lof; m* +- m; v* +- v; t* +- t end if 


end for 

end for 


end for 

BM(x)+- B,*(x)[+(x,* - t*)l+ 

BM+1(x)+- B,*(X)[-(X,* - t*)l+ 

M + - M + 2  


end loop 

end algorithm 


Unlike recursive partitioning, the basis functions produced by Algorithm 2 
do not have zero pairwise product expectations; that is, the corresponding 
regions are not disjoint but overlap. Removing a basis function does not 
produce a hole in the predictor space (so long as the constant basis function B, 
is never removed). As a consequence, it is not necessary to employ a special 
two a t  a time backward stepwise deletion strategy based on sibling pairs. A 
usual one at a time backward stepwise procedure of the kind ordinarily 
employed with regression subset selection can be used. Algorithm 3 presents 
such a procedure for use in the MARS context. 

Algorithm 3 (MARS-backwards stepwise) 
J *  = { l ,2 , .. . ,M,,); K* +- J *  
lof * +- miya j  ,*) LOF(C j E  ,.aj Bj(x)) 
For M = M,, to2do:  b +- co; L +- K* 

For m = 2 t o  Mdo:  K +- L - {m) 
lof min{aklk E K) LOF(C k ,  KakBk(x))
if lof < b, then b +- lof; K* +- K end if 
if lof < lof *, then lof* +- lof; J *  +- K end if 

end for 
end for 
end algorithm 

Initially (line 1) the model is comprised of the entire basis function set J *  
derived from Algorithm 2. Each iteration of the outer For loop of Algorithm 3 
causes one basis function to be deleted. The inner For loop chooses which one. 
I t  is the one whose removal either improves the fit the most or degrades it the 
least. Note that the constant basis function B,(x) = 1 is never eligible for 
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removal. Algorithm 3 constructs a sequence of M,, - 1 models, each one 
having one less basis function than the previous one in the sequence. The best 
model in this sequence is returned (in J * )upon termination. 

e 

3.5. ANOVA decomposition. The result of applying Algorithms 2 and 3 is 
a model of the form 

Here a ,  is the coefficient of the constant basis function B, and the sum is 
over the basis functions Bm (22) produced by Algorithm 2 that survive the 
backwards deletion strategy of Alg~rithm 3 and sk, = k1.This (constructive) 
representation of the model does not provide very much insight into the 
nature of the approximation. By simply rearranging the terms, however, one 
can cast the model into a form that reveals considerable information about the 
predictive relationship between the response y and the covariates x. The idea 
is to collect together all basis functions that involve identical predictor variable 
sets. 

The MARS model (23) can be recast into the form 

The first sum is over all basis functions that involve only a single variable. The 
second sum is over all basis functions that involve exactly two variables, 
representing (if present) two-variable interactions. Similarly, the third sum 
represents (if present) the contributions from three-variable interactions and 
SO on. 

Let V(m ) = ( v ( k ,m)}fm be the variable set associated with the m th  basis 
function B ,  (23). Then each function in the first sum of (24) can be expressed 
as 

This is a sum over all single variable basis functions involving only xiand is a 
q = 1spline representation of a univariate function. Each bivariate function in 
the second sum of (24) can be expressed as 

which is a sum over all two-variable basis functions involving the particular 
pair of variables x, and xj. Adding this to the corresponding univariate 
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contributions (25) (if present) 

d 


gives a q = 1bivariate tensor product spline approximation representing the 
joint bivariate contribution of xi and xj to the model. Similarly, each trivari- 
ate function in the third sum can be obtained by collecting together all basis 
functions involving the particular variable triples 

Adding this to the corresponding univariate and bivariate functions (251, (26) 
involving xi, xj and xk, provides the joint contribution of these three variables 
to the model. Terms involving more variables (if present) can be collected 
together and represented similarly. Owing to its similarity to decompositions 
provided by the analysis of variance for contingency tables, we refer to (24) as 
the ANOVA decomposition of the MARS model. 

Interpretation of the MARS model is greatly facilitated through its ANOVA 
decomposition (24). This representation identifies the particular variables that 
enter into the model, whether they enter purely additively or are involved in 
interactions with other variables, the level of the interactions and the other 
variables that participate in them. Interpretation is further enhanced by 
representing the ANOVA decomposition graphically. The additive terms (25) 
can be viewed by plotting fi(xi) against xi as one does in additive modeling. 
The two-variable contributions can be visualized by plotting fi?(xi, xj) (27) 
against xi and xj using either contour or perspective mesh plots. Models 
involving higher level interactions can be (roughly) visualized by viewing plots 
on variable pairs for several (fixed) values of the other (complementary) 
variables (see Section 4.7). 

3.6. Model selection. Several aspects of the MARS procedure (Algorithms 
2 and 3) have yet to be addressed. Among these are the lack-of-fit criterion 
LOF (Algorithm 2, line 7 and Algorithm 3, lines 2 and 5) and the maximum 
number of basis functions M,, (Algorithm 2, line 2 and Algorithm 3, lines 1 
and 3). The lack-of-fit criterion used with the algorithm depends on the 
distance (loss) function A specified with the integral (2) or expected (3) error. 
The most often specified distance is squared-error loss 

because its minimization leads to algorithms with attractive computational 
properties. As will be seen in Section 3.9, this aspect is very important in the 
context of Algorithm 2 and so squared-error loss is adopted here as well. The 
goal of a lack-of-fit criterion is to provide a data based estimate of future 
prediction error (2), (3) which is then minimized with respect to the parame- 
ters of the procedure. 
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As in Friedman and Silverman (1989) and Friedman (1988) we use a 
modified form of the generalized cross-validation criterion originally proposed 
by Craven and Wahba (1979): 

Here the dependencies of f (23), and the criterion, on the number of (noncon- 
stant) basis functions M is explicitly indicated. The GCV criterion is the 
average-squared residual of the fit to the data (numerator) times a penalty 
(inverse denominator) to account for the increased variance associated with 
increasing model complexity (number of basis functions M 1. 

If the values of the basis function parameters [number of factors K,, 
variables v ( k , m),knot locations t,, and signs s,,] associated with the MARS 
model were determined independently of the data response values (y,, . . . ,y,), 
then only the coefficients (a,, . . . ,a,) are being fit to the data. Consequently 
the complexity cost function is 

where B is the M x N data matrix of the M (nonconstant) basis functions 
(BLj= B,(x,)). This is equal to the number of linearly independent basis 
functions in (23) and therefore C(M) here (31) is just the number of parame- 
ters being fit. Using (31) in (30) leads to the GCV criterion proposed by Craven 
and Wahba (1979). 

The MARS procedure (like recursive partitioning) makes heavy use of the 
response values to construct a basis function set. This is how it achieves its 
power and flexibility. This (usually dramatically) reduces the bias of model 
estimates, but at  the same time increases the variance since additional param- 
eters (of the basis functions) are being adjusted to help better fit the data at 
hand. The reduction in bias is directly reflected in reduced (expected) average 
squared residual [numerator (3011. The (inverse) denominator (301, (31) is, 
however, no longer reflective of the (increased) variance owing to the addi- 
tional number of (basis function) parameters as well as their nonlinear nature. 

Friedman and Silverman (1989) suggested using (30) as a lack-of-fit crite- 
rion in these circumstances, but with an increased cost complexity function 
C(M) to reflect the additional (basis function) parameters that, along with the 
expansion coefficients (a,, . . . ,aM), are being fit to the data. Such a cost 
complexity function can be expressed as 

Here C(M) is given by (31) and M is the number of nonconstant basis 
functions in the MARS model, being proportional to the number of (nonlinear) 

,basis function parameters. The quantity d in (32) represents a cost for each 
basis function optimization and is a (smoothing) parameter of the procedure. 
Larger values for d will lead to fewer knots being placed and thereby smoother 
function estimates. 
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In the case of additive modeling, Friedman and Silverman (1989) gave an 
argument for choosing the value d = 2, based on the expected decrease in the 
average-squared residual by adding a single knot to make a piecewise-linear 
model. The MARS procedure canebe forced to produce an additive model by 
simply modifying the upper limit of the outer For loop in Algorithm 2 (line 3) 
to always have the value one. With this modification only the constant basis 
function B,  is eligible for splitting and the resulting model is a sum of 
functions each of a single variable ( K ,  = 1) which, after the corresponding 
ANOVA decomposition (241, assumes the form of an additive model (13). 
Restricting MARS in this manner leads to a palindromically invariant version 
of the Friedman and Silverman (1989) procedure. This type of additive model- 
ing is a restricted version of general MARS modeling. A higher degree of 
optimization (over m )  is being performed by the' latter causing the data 
at  hand to be fit more closely, thereby increasing variance. In order for the 
GCV criterion (301, (31)) (32) to reflect this, an even larger value for d is 
appropriate. 

One method for choosing a value for d in any given situation would be to 
simply regard it as a parameter of the procedure that can be used to control 
the degree of smoothness imposed on the solution. Alternatively it could be 
estimated through a standard sample reuse technique such as bootstrapping 
[Efron (1983)l or cross-validation [Stone (197411. In a fairly wide variety of 
simulation studies (a subset of which are presented in Section 4) the resulting 
model and its accuracy (2), (3) are seen to be fairly independent of the value 
chosen for the parameter d (32). These simulation studies indicate: 

1. The optimal cost complexity function G ( M )to be used in the GCV criterion 
(30) (in the context of MARS modeling) is a monotonically increasing 
function with decreasing slope as M increases. 

2. The approximation (321, with d = 3, is fairly effective, if somewhat crude. 
3. The best value for d in any given situation depends (weakly) on 	M, N, n 

and the distribution of the covariate values in the predictor space. 
4. Over all situations studied, the best value for d is in the range 2 I d I 4. 
5. The actual accuracy in terms of either integral (21, (29) or expected (3)) (29) 

squared error is fairly insensitive to the value of d in this range. 
6. The value of the GCV criterion for the final MARS model does exhibit a 

moderate dependence on the value chosen for d .  

A consequence of (5) and (6) is that while how well one is doing with the 
MARS approach is fairly independent of d ,  how well one thinks one is doing 
(based on the optimized GCV score) does depend somewhat on its value. 
Therefore, a sample reuse technique might be used to obtain an additional 
estimate of the goodness-of-fit of that final model if it needs to be known fairly 
precisely. 

The strategy in recursive partitioning regression [Breiman, Friedman, 
Olshen and Stone (1984)l is to let the forward stepwise procedure produce a 
fairly large number of regions (basis functions) and then have the backwards 
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stepwise procedure trim the model back to an appropriate size. The arguments 
in favor of this apply equally well to the MARS approach. Therefore, the value 
chosen for M,, in Algorithms 2 and 3 should be considerably larger than the 
optimal (minimal GCV) model siae M*. Typically, choosing M,, = 2M* is 
sufficient. 

3.7. Degree-of-continuity. One of the central ideas leading to the MARS 
generalization of recursive partitioning is to replace the step function implicit 
in the latter with a truncated power spline basis function (21). This leads to an 
approximation in the form of an expansion in tensor product spline basis 
functions. The continuity properties of this approximation are governed by the 
order q (21) chosen for the univariate spline functions comprising the tensor 
products; derivatives exist to order q. 

If the intent is accurate estimation of the function (as opposed to its 
derivatives of various orders), then there is little to be gained by imposing 
continuity beyond that of the function itself. If the true underlying function 
nowhere has a very large local second derivative, then a small additional 
increase in accuracy can be achieved by imposing continuous first derivatives. 
Also, continuous (first) derivative approximations have considerably more 
cosmetic appeal. There is, however, little to be gained and in fact much to lose, 
by imposing continuity beyond that of the first derivative, especially in high 
dimensional settings. 

The difficulty with higher order regression splines centers on so called end 
effects. The largest contribution to the average approximation error (2), (3) 
emanates from locations x near the boundaries of the domain. This phe- 
nomenon is well known even in univariate smoothing (n  = 1) and is especially 
severe in higher dimensions. As the dimension of the covariate space increases, 
the fraction of the data points near a boundary increases rapidly. Fitting high 
degree polynomials (associated with high degree regression splines) in these 
regions leads to very high variance of the function estimate there. This is 
mainly due to the lack of constraints on the fit at the boundaries. 

One approach that has been suggested [Stone and Koo (1985)l is to modify 
the spline basis functions so that near the ends of the data interval (on each 
variable) they smoothly join a linear function. This can substantially help 
moderate the bad end effects of (unmodified) regression splines in the case of 
smoothing (n  = 1) and additive modeling (13), although the approximating 
basis functions can still have very large slope near the boundaries. A computa- 
tionally simpler way to ensure a linear approximation near the boundaries is to 
make a piecewise-linear approximation everywhere by using q = 1 tensor 
product splines. This is accomplished in the MARS approach by using q = 1 
truncated power (univariate) spline basis functions (21) in Algorithm 2 (lines 
6, 12 and 13). 
. A piecewise-linear approximation, of course, does not possess continuous 

derivatives. The lowest order spline approximation with continuous derivatives 
involves q = 2 univariate spline basis functions. Their use, however, leads to 
the previously cited problems. Motivated by the approach of Stone and Koo 
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(19851, we fit with a modified basis set. These functions resemble q = 1 
splines, but have continuous derivatives. 

The model (23) produced by Algorithms 2 and 3 involves a sum of products 
of functions of the form d 


(33) b(xls, t )  = [ s (x  - t ) ]  + .  

Our strategy for producing a model with continuous derivatives is to replace 
each such function by a corresponding truncated cubic function of the form 

x l t- ,  

~ ( x l s =  + l , t - , t , t + )  = 
2 + r + ( x - t - )  3 t - < x  < t + ,  

x 2 t+ ,  

with t -<  t < t+ .  Setting 

causes C(xls, t-, t, t+ )  to be continuous and have continuous first derivatives. 
There are second derivative discontinuities at  x = ,.t Each truncated linear 
function (33) is characterized by a single knot location t, whereas each 
corresponding truncated cubic function (34), (35) is characterized by three 
knots; these are a central knot t and upper/lower side knots t,. Figure 2 
compares the two functions. 

Each factor (33) in every basis function in the approximation produced by 
Algorithms 2 and 3 (23) is replaced by a corresponding truncated cubic factor 
(34), (35;. The central knot t (34) is placed at the same location as the (single) 
knot for its associated truncated linear function (33). The side knots t,, 
t -<  t < t+ ,  are located so as to reduce the number of second derivative 
discontinuities. This is accomplished through the ANOVA decomposition of 
the MARS model (24), (251, (261, (28). 

Each basis function m in (23) has a knot set {tkm}fm. The ANOVA decom- 
position collects together all basis functions corresponding to exactly the same 
variable set {v(k, m)}fm. Thus, the knot sets associated with each ANOVA 
function (25), (26), (28) can be viewed as a set of points (multivariate knots) in 
the same Km-dimensional space. The projections of these points onto each of 
the respective K, axes, v(k, m), gives the knot locations of the factors that 
correspond to that variable. These are the central knot locations for the 
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FIG.2. Comparison of q = 1 truncated power spline functions and the corresponding continuous 
derivative truncated cubics, with central knot t = 0.5 and side knots at t -=  0.2 and t+= 0.7. 

piecewise cubic factors. The side knots t ,  for each cubic factor are placed at 
the midpoints between its central knot and the two adjacent central knots in 
the same projection. The lower/upper side knots for the corresponding small- 
est/largest projected central knot value are placed midway between the central 
knot and the smallest/largest data value on that variable. Figure 3 illustrates 
this process for one- and two-dimensional ANOVA functions. 

The final model is obtained by fitting the resulting piecewise cubic basis 
function set to the data. I t  will have continuous first (but not second) deriva- 
tives. The contribution to the fitted model of each basis function far from its 
central knot location will be the same as its corresponding piecewise linear 
basis function. Therefore this continuous derivative model will tend to have 
the same highly desirable boundary properties as the piecewise linear model 
produced by Algorithms 2 and 3. The important ingredient is that the slope of 
each univariate basis factor never exceeds a value of one. 

, 3.8. Knot optimization. The MARS procedure (Algorithm 2), as well as 
recursive partitioning (Algorithm I),can be viewed as a technique for develop- 
ing a multivariate model, based on sums of products of univariate functions 
(171, (20), (23), through the use of a univariate smoother. This can be seen by 
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FIG.3. Illustration of side knot placement for a one-dimensional ANOVA function comprised of 
three basis functions (upper frame) and a two-dimensional ANOVA function with two basis 
functions (lower frame). 

casting the (MARS) model in the form 

with 

The function pmu(x,) has the form 

which is just a (q = 1)piecewise linear spline representation of a univariate 
function. (In the case of recursive partitioning, it would be a q = 0 piecewise 
constant representation.) The second term in (36) isolates the contributions to 
the model of the variable set V(m) of the mth basis function and the set 
including the variable v with V(m). The first term (37) represents the contri- 
butions of the variables from the other basis functions. Minimization of the 
lack-of-fit criterion (30) in Algorithm 2 (line 7) performs a joint optimization of 
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the current model with respect to the coefficients (c,, . . . ,c,) of the univariate 
function cp,, (38) and those of the other basis functions {ai}(37). 

Expressing the current model in the form given by (36) and letting 

this optimization can be written in the form 

Here the  dependence of the respective quantities on the multivariate argument 
x has been surpressed. If one fixes the values of the coefficients {ai}(37), then 
(40) has the general solution 

which can be estimated by a weighted smooth of R\,,/Bm on xu, with 
weights given by B;. Letting this smooth take the form of a piecewise linear 
spline approximation (38) gives rise (in an indirect way) to the MARS ap- 
proach. 

This framework provides the connection between MARS and the smoothing 
(and additive modeling) method (TURBO) suggested by Friedman and 
Silverman (1989). They presented a forward stepwise strategy for knot place- 
ment in a simple piecewise linear smoother. The inner For loop of Algorithm 2 
can be viewed as an application of this strategy for choosing the best location 
for the next knot t ,  in cpm,(x,) (38), (41) in the more general context of MARS 
modeling. In fact, in the univariate case (n = I), the MARS algorithm simply 
represents a (palindromically invariant) version of TURBO. As noted earlier, 
restricting the upper limit of the outer For loop to always have the value one 
(Algorithm 2) gives rise (for n > 1) to the TURBO method of additive model- 
ing. 

Both recursive partitioning (Algorithm 1, line 5) and MARS (Algorithm 2, 
line 5) make every distinct (nonzero weighted) marginal data value eligible for 
knot placement. As pointed out by Friedman and Silverman (1989), this has 
the effect of permitting the corresponding piecewise linear smoother (381, (41) 
to achieve a local minimum span of one observation. In noisy settings, this can 
lead to locally high variance of the function estimate. There is no way that a 
smoother, along with its lack-of-fit criterion, can distinguish between sharp 
structure in the true underlying function f (1) and a run of either positive or 
negative error values E (1). If one assumes (as one must) that the underlying 
function is smooth compared to the noise, then it is reasonable to impose a 
minimum span on the smoother that makes it resistant to runs in the noise of 
length likely to be encountered in the errors. In the context of piecewise linear 
smoothing, this translates into a minimal number L of (nonzero weighted) 
observations between each knot. Assuming a symmetric error distribution, 
Friedman and Silverman (1989) use a coin tossing argument to propose 
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choosing L = L*/2.5 with L* being the solution to 

(42) Pr( L*) = a. 

Here Pr(L*) is the probability of observing a (positive or negative) run of 
length L* or longer in nNm tosses of a fair coin and a is a small number (say 
a = 0.05 or 0.01). The quantity Nm is the number of observations for which 
B ,  > 0 (Algorithm 2, line 5). The relevant number of tosses is nNm, since 
there are that many potential locations for each new knot (inner two For loops 
in Algorithm 2) for each basis function Bm (outer For loop). 

For nNm 2 10 and a < 0.1, a good approximation to L* (42) is 

so that a reasonable number of counts between knots is given by 

The denominator in (43) arises from the fact that a piecewise linear smoother 
must place between two and three knots in the interval of the run to respond 
to it and not degrade the fit anywhere else. Using (43) gives the procedure 
resistance, with probability 1- a, to a run of positive or negative error values 
in the interior of the interval. 

The arguments that lead to (43) do not apply to the ends of the interval; 
that is, L(a) refers to the number of counts between knots but not to the 
number of counts between the extreme knot locations and the corresponding 
ends of the interval defined by the data. As discussed in Section 3.7, it is 
essential that end effects be handled well for the procedure to be successful. An 
argument analogous to the one that leads to L(a) (43) for the interior, can be 
advanced for the ends. The probability of a run of length L* or longer of 
positive or negative error values at  the beginning or end of the data interval is 
2 - ~ * + 3. There are n such intervals, corresponding to the n predictor vari- 

ables, so that the total probability of encountering an end run is 

(44) Pr(L*) = 7 ~ 2 - ~ * + ~ .  

Therefore requiring at  least 

(45) Le(a) = 3 - log,(a/n) 

observations between the extreme knots and the corresponding ends of the 
interval provides resistance (with probability 1- a )  to runs at  the ends of the 
data intervals. 

The quantity a in (431, (45) can be regarded as another smoothing para- 
meter of the procedure. Both L(a) (43) and Le(a) (45) are, however, 
fairly insensitive to the value of a .  The differences L(0.01) - L(0.05) and 
Le(O.01) - Le(0.05) are both approximately equal to 2.3 observations. In any 
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case, both expressions can only be regarded as approximate since they only 
consider the signs and ignore the magnitudes of the errors in the run. 

I t  can be noted that (36), (37), (39) and (41) could be used to develop a 
generalized backfltting algorithm based on a (univariate) local averaging 
smoother, in direct analogy to the backfitting algorithm for additive modeling 
[Friedman and Stuetzle (1981), Breiman and Friedman (1985) and Buja, 
Hastie and Tibshirani (1989)l. Like MARS, this generalized backfitting algo- 
rithm could be used to fit models involving sums of products of univariate 
curve estimates. I t  would, however, lack the flexibility of the MARS procedure 
(especially in high dimensions) owing mainly to the latter's close relation to 
the recursive partitioning approach (local variable subset selection-see Sec-
tions 2.4.2 and 6). It would also tend to be computationally far more expensive. 

3.9. Computational considerations. In Sections 3.2 and 3.3, the MARS 
procedure was motivated as a series of conceptually simple extensions to 
recursive partitioning regression. In terms of implementation, however, these 
extensions produce a dramatic change in the algorithm. The usual implemen- 
tations of recursive partitioning regression (AID [Morgan and Sonquist (1963)l 
and CART [Breiman, Friedman, Olshen and Stone (1984)l) take strong advan- 
tage of the special nature of step functions, along with the fact that the 
resulting basis functions have disjoint support, to dramatically reduce the 
computation associated with the middle and inner For loops of Algorithm 1 
(lines 4 and 5). In the case of least-squares fitting, very simple updating 
formulae can be employed to reduce the computation for the associated linear 
(least-squares) fit (line 7) from O(NM2 + M3) to O(1). The total computation 
can therefore be made proportional to nNM,,, after sorting. Unfortunately, 
these same tricks cannot be applied to the implementation of the MARS 
procedure. In order to make it computationally feasible, different updating 
formulae must be derived for the MARS algorithm. 

The minimization of the lack-of-fit criterion (30) in Algorithm 2 (line 7) is a 
linear least-squares fit of the response y on the current basis function set (line 
6). There are a variety of techniques for numerically performing this fit. The 
most popular, owing to its superior numerical properties, is based on the QR 
decomposition [see Golub and Van Loan (1983)l of the basis data matrix B, 

(46) Bmi= Bm(xi) .  

As noted before, however, computational speed is of paramount importance 
since this fit must be repeated many times in the course of running the 
algorithm. A particular concern is keeping the computation linear in the 
number of observations N, since this is the largest parameter of the problem. 
This rules out the QR decomposition technique in favor of an approach based 
on using the Cholesky decomposition to solve the normal equations 

(47) BTBa = BTy 

for the vector of basis coefficients a (line 6). Here y is the (length N )  vector of 
response values. This approach is known to be less numerically stable than the 
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QR decomposition technique. Also, the truncated power basis (21) is the least 
numerically stable representation of a spline approximation. Therefore, a great 
deal of care is required in the numerical aspects of an implementation of this 
approach. This is discussed later. 

If the basis functions are centered to have zero mean, then the matrix 
product BTB is proportional to the covariance matrix of the current basis 
function set. The normal equations (47) can be written 

with 

and Biand 7 the corresporiding averages over the data. These equations (481, 
(491 must be resolved for every eligible knot location t , for every variable v, for 
all current basis functions m and for all iterations M of Algorithm 2 (lines 2, 
3, 4 and 5). If carried out in a straightforward manner, this would require 
computation proportional to 

with cu and p constants of proportionality and L given by (43). This computa- 
tional burden would be prohibitive except for very small problems or very large 
computers. Although it is not possible to achieve the dramatic reduction in 
computation for MARS as can be done for recursive partitioning regression, 
one can reduce the computation enough, so that moderate-sized problems can 
be conveniently run on small computers. Following Friedman and Silverman 
(19891, the idea is to make use of the special properties of the q = 1truncated 
power spline basis functions to develop rapid updating formulae for the 
quantities that enter into the normal equations (48), (491, as well as to take 
advantage of the rapid updating properties of the Cholesky decomposition [see 
Golub and Van Loan (1983)l. 

The most important special property of the truncated power basis used here 
is that each (univariate) basis function is characterized by a single knot. 
Changing a knot location changes only one basis function, leaving the rest of 
the basis unchanged. Other bases for representing spline approximations, such 
as the minimal support B-splines, have superior numerical properties but lack 
this important computational aspect. Updating formulae for B-splines are 
therefore more complex giving rise to slower computation. 

The current model (Algorithm 2, line 6) can be reexpressed as 
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The inner For loop (line 5) minimizes the GCV criterion (30) jointly with 
respect to the knot location t and the coefficients a,, . . . ,a,+,. Using g' (51) 
in place of g (line 6) yields an equivalent solution with the same optimizing 
GCV criterion lof* (line 8) and knot location t* (line 8). (The solution 
coefficient values will be different.) The advantage of using g' (51) is that only 
one basis function is changing as the knot location t changes. 

Friedman and Silverman (1989) developed updating formulae for least- 
squares fitting of q = 1 splines by visiting the eligible knot locations in 
decreasing order and taking advantage of that fact for t I u, 

X l t  
- + - - + x - t  t < x < u  

( Ou - t . x  2 u .  

The Friedman and Silverman (1989) updating formulae can be extended in a 
straightforward manner to the more general MARS setting, giving (t I u)  

with s(t) = C x,k Brnk(xuk- t). In (521, B,, and B,, are elements of the 
basis function data matrix (46), the xu, are elemetlts of the original data 
matrix and y, are the data response values. 

These updating formulae (52) can be used to obtain the last ( M  + 1)st row 
(and column) of the basis covariance matrix V and last element of the vector c 
at all eligible knot locations t with computation proportional to ( M  + 2)Nm. 
Here Nm is the number of observations for which Bm(x) > 0 (line 5). Note 
that all the other elements of V and c do not change as the knot location t 
changes. This permits the use of updating formulae for the Cholesky decompo- 
sition to reduce its computation from 0(M3)  to O(M2) [in solving the normal 
equations (48)] at each eligible knot location. Therefore the computation 
required for the inner For loop (lines 5-9) is proportional to aMN, + 

-pM2Nm/L. This gives an upper bound on total computation for Algorithm 2 
as being proportional to 
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TABLE1 
Computation time in seconds for executing the MARS procedure on the alternating current 
impedance example of Section 4.4.1, as a function of the maximum size, M,,, of the basis 

Friction set* 

Mm, 

1 1.5 3.0 4.4 8.4 17.2 32.1 54.2 
2 2.3 7.2 14.1 24.6 88.1 227.8 536.9 
n 2.4 8.1 15.4 33.7 119.1 271.3 546.2 

*Computations were performed on a SUN 3/260 with FPA. For this example n = 4 and N = 200. 
Execution times scale linearly with both these parameters. The quantity mi is the maximum 
number of variables that are allowed to interact. 

Thus, comparing with (50) the use of updating formulae is seen to reduce the 
computation roughly by a factor of NM,,/L. For typical values of N = 200, 
M,, = 30 and L = 5, this reduces the required computation by roughly a 
factor of 1000. 

Table 1shows the total computation time (sec.) of the MARS procedure as a 
function of M,, for one of the examples (AC circuit impedance, Section 4.4.1) 
discussed later. These times were obtained on a SUN Microsystems Model 
3/260 (with floating point accelerator). For this example n = 4 and N = 200. 
The computation scales linearly in both n and N with the MARS algorithm. 

Three timing sequences are shown in Table 1,corresponding to different 
constraints being placed on the final MARS model. The first row (mi = 1) 
corresponds to an additive model where interactions among the variables are 
prohibited. As mentioned earlier, this is accomplished by suppressing the outer 
For loop in Algorithm 2 (line 3) and only allowing the constant basis function 
B,(x) = 1to appear in the products with the univariate spline basis functions. 
This, of course, reduces the total computation roughly by a factor proportional 
to M,,. The second row (mi = 2) only allows two-variable interactions to 
appear in the model. This reduces computation a little since only previous 
basis functions involving one variable are permitted to appear in the products. 
The last row in Table 1(mi = n)  shows the times for the fully unconstrained 
MARS model. 

It should be noted that in all the examples discussed in this paper (some of 
which, like this one, involve fairly complex functions) the optimal number of 
basis functions was between 10 and 15, so that M,, values around 20 to 30 
were appropriate. Setting M,, = 50 permits the procedure to use from 125 to 
200 degrees of freedom to fit the final model, if required, thereby allowing it to 
approximate very complex functions. Clearly though, for very large problems 
(say n > 20 and N > 1000), either long execution times or fast computers 
(compared to the one used here) would be required. I t  can also be noted that 
the MARS algorithm admits a high degree of parallelization so that it could 
run very fast on computers with parallel architectures. 
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Updating formulae for higher order (q > 1) truncated power spline basis 
functions (21) can be developed in analogy to (52). They would, however, be far 
more complex than those for q = 1 leading to much slower execution of the 
algorithm. Also, their corresponding numerical properties would be very much 
worse. 

At any point during the execution of Algorithm 2, the current basis function 
set need not be linearly independent. (The basis functions set comprising the 
final model is, however, always linearly independent.) Therefore, the covari- 
ance matrix V appearing in the normal equations (48) may be singular. This 
presents no fundamental problem since they can be solved by applying pivoting 
in the Cholesky decomposition [see Dongarra, Moler, Bunch and Stewart 
(1979)l. A better strategy from the point of view of MARS modeling is, 
however, to slightly modify the normal equations via 

(54) (V + ED)^ = c ,  

where D is a diagonal (M + 1) x ( M  + 1) matrix comprised of the diagonal 
elements of V. The coefficients for the basis function set a are then taken to be 
the solution derived from (54). The average-squared residual 

M +  1 

(55) (y, - 412 - ai(c i  + SD,,a,) 
k = l  i = l  I 


is still used as the numerator of the GCV criterion (30). The value for S is 
taken to be a small number just large enough to maintain numerical stability. 

The principal advantage of this ridge regression approach (54) is that it 
eliminates the need for pivoting in the Cholesky decomposition update, thereby 
increasing execution speed. Additional advantages are that it increases numeri- 
cal stability to help compensate for the bad numerical properties of the 
truncated power spline basis representation and it applies a small overall 
shrinkage to the solution coefficients to help compensate for the selection bias 
inherent in stepwise regression procedures [see Copas (1983)l. 

The updating formulae (52) are not necessarily numerically stable. Widely 
different locations and scales for the predictor variables can cause instabilities 
that adversely effect the quality of the final model. The MARS procedure is 
(except for numerics) invariant to the locations and scales of the predictor 
variables. I t  is therefore reasonable to perform a transformation that causes 
the resulting locations and scales to be most favorable from the point of view 
of numerical stability. Standardizing them to each have zero location and unit 
scale provides good numerical properties. 

4. Simulation studies and examples. In the following sections we 
present the results of applying the MARS procedure to a series of simulated 
and real data sets. The goal is to try to gain some understanding of its 
properties and to learn in what situations one might expect it to provide better 
performance than existing methodology. In all the examples the smoothing 
parameter d (32) was taken to be d = 3. The software automatically reduces it 
to 2d/3 (= 2) for additive modeling. The minimum number of observations 
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between knots was determined by (43) and the number between the extreme 
knots and the edges was determined by (45), both with a = 0.05. In all 
examples the explanatory variables were standardized to aid in numerical 
stability (see Section 3.9). In all simulation studies the covariate vectors were 
independently drawn (from the same sampling distribution) for each replica- 
tion of the experiment. Therefore, nonidentical (random) designs were realized 
for each of the 100 replications. All results reported are for the continuous 
derivative (piecewise cubic) model (see Section 3.7) unless otherwise noted. 

4.1. Modeling pure noise. With a modeling procedure as flexible as MARS, 
a reasonable concern is that it might find considerable spurious structure in 
data for which the signal to noise ratio is small. This false structure would 
reflect the sampling fluctuations in the noise E (I) and would provide a 
misleading indication of the association between the response and predictor 
variables. One would expect this effect to be especially severe for small samples 
in high dimensions. Our first simulation study indicates that this tends not to 
be the case for the MARS procedure. 

Tables 2 and 3 summarize the results of applying MARS to pure noise 
f(x) = 0 (1). Results are presented for two dimensionalities (n = 5, 10) and 
three sample sizes ( N  = 50, 100, 200). The summary consists of the percent 
points of the lower half of the distribution of the optimizing GCV score (30) for 
the MARS model, scaled by that for the corresponding constant model f(x) = 7. 
These distributions were obtained by applying MARS to 100 data sets for 
which the response values were randomly generated from a normal distribu- 
tion and the covariate vectors were randomly generated from a uniform 
distribution in Rn.  As in Table 1, Tables 2 and 3 show the results for three 
types of constraints being placed on the model. These constraints are con- 

TABLE2 
Results of applying MARS to pure noise in  five dimensions ( n  = 5 ) . Shown are the lower quantiles 

for the ratio of the MARS GCV score to that of a constant model f (x)  = 



34 J.H. FRIEDMAN 

TABLE3 
Results of applying MARS to pure noise in  ten dimensions ( n  = 10). Show? are the lower 

quantiles of the ratio of the MARS GCV score to that of a constant model f ( x )  = 4 

trolled by the parameter m i ,  which is the maximum number of variables 
allowed to appear in any basis function, K ,  Imi  (231, thereby controlling the 
number of variables that can participate in interaction effects. For mi  = 1, the 
model is restricted to be additive in the variables, whereas for mi  = 2, 
interactions are limited to those involving (at most) two variables. Setting 
mi  = n ,  places no constraint on the number of variables that can enter into 
interactions. 

This simulation study represents one test of the lack-of-fit criterion based 
on the GCV score (30) using the cost complexity criterion C ( M )  (31), (32). 
Tables 2 and 3 show that the MARS procedure in this situation seldom claims 
to produce a model that fits the data markedly better than the response mean. 
Over half of the time (as reflected by the median) it claims to provide no better 
fit than the constant model at  all dimensionalities and sample sizes shown. 
Even the best MARS fit over the 100 trials (1% point) does not produce a 
distinctly superior GCV value to the constant (no structure) fit on the same 
data. This is especially noteworthy given the small sample sizes for these 
dimensionalities. 

4.2. MARS modeling on additive data. A related concern to that of the 
previous section concerns what happens when MARS is applied in situations 
where the true underlying function f (1) is additive (13) in the predictor 
variables. I t  might be expected that given the ability of MARS to introduce a 
large number of complex interactions into its models, that it might be some- 
what at  a disadvantage in these situations when compared to procedures that 
restrict the model to be additive. This section presents a simulation study that 
indicates that this is not the case. 
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We use for this study an example presented in Friedman and Silverman 
(1989) 

This function has a nonlinear additive dependence on the first two variables, a 
linear dependence on the next three and is independent of the last five (pure 
noise) variables. A simulation study was performed consisting of 100 replica- 
tions of the following experiment. First N(=  50,100,200) 10-dimensional 
(n = 10) covariate vectors were generated in the unit hypercube. Then corre- 
sponding response values were assigned according to , 

with the cirandomly generated from a standard normal and f(x) given by 
(56). Here the signal-to-noise ratio is 3.28 so that the true underlying function 
(56) accounts for 91% of the variance of the response (57). 

A reasonable strategy to be used with MARS modeling is to fit both an 
additive model (mi = 1) and one that permits interactions (mi = 2 or mi = n). 
The respective GCV scores of both models can then be compared and the one 
corresponding to the lowest score chosen. With this strategy a model involving 
interactions is only used if it claims (through its GCV score) to do better than 
an additive model on the same data. 

For each of the 100 replications (at each sample size N), the MARS 
procedure was applied with mi = 1, 2 and n.  The first value (mi = 1) corre- 
sponds to additive modeling, the second (mi = 2) permits interactions in at  
most two variables, whereas the last (mi = n = 10) fits an unconstrained 
MARS model. For the last two mi values, the corresponding interaction fit 
was only used if it produced a smaller GCV score than the additive model on 
the same data. 

Table 4 compares the average accuracy of using this strategy to that of 
additive modeling on the purely additive data (56), (57). The principal measure 
of accuracy is the (scaled) integral-squared error ISE (2), (29), 

ISE = / [ f ( x )  - f (x ) ,f ( ~ ) ] ~ d " x , / v a r  
D X E D  

where here n = 10 and D is the 10-dimensional unit hypercube. For each 
replication of the simulation study, the ISE (58) was estimated by Monte Carlo 
integration using 5000 points randomly generated from a uniform distribution 
over D. 

A closely related quantity of interest is the (scaled) predictive-squared error 

(59) PSE = E [ y  - f (x)]'/vary 
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TABLE4 

Comparison of the accuracy of MARS modeling, with interactions permitted ( m i  = 2, lo), to that 


ofpurely additive modeling ( m i  = 1) on aaditive data (Section 4.2) 


- * -
ISE PSE GCV / PSE 

which is related to the ISE (58) by 

(60) PSE = (ISE . Var f (x) + Var &) /vary ,  
XED 


with F being the error component (1). If the response values y,, . . . ,y, y e  
standardized to have unit variance, then the GCV criterion (30), (31), (32) is 
intended as an estimate of the PSE (591, (60) and the ratio GCV/PSE provides 
an estimate of how well the optimized GCV criterion for the model is estimat- 
ing the true PSE. 

Shown in Table 4 are the average ISE (581, PSE (59) and GCV/PSE, along 
with the corresponding standard deviations (in parentheses) over the 100 
replications at each sample size N(=  50,100,200). (Note that the standard 
deviations of the averages shown in the table are one-tenth the corresponding 
standard deviations shown.) Comparing the first row (mi = 1) to the next two 
(mi = 2, n )  shows that there is little sacrifice in accuracy using interaction 
models in the context of the earlier strategy, even though the true underlying 
function (56) involves no interactions. Table 4 also shows that the optimized 
GCV score produced by the MARS fit slightly overestimates (on average) the 
actual predictive-squared error for this problem at  all sample sizes studied. 
This effect is most pronounced for the smallest sample size ( N  = 50). (Note 
that the variability of this ratio as reflected by its standard deviation over the 
100 replications is fairly high.) 

The previous strategy chooses the additive model over that involving inter- 
actions only if the former produces a GCV score no worse than the latter. The 
first column of Table 5 shows the number of times the additive model was 
chosen in the 100 replications of this simulation experiment. As can be seen, 
the additive model was being chosen most of the time. This is why the loss in 
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TABLE5 

Number of replications (out of 100) for which the optimizing GCV score for the additive model 

( m i  = 1) is less than (or equal to) THR times that for models with interactions allowed ( m i  = 


2, lo), on additive data (Section 4.2) 

8 

mi THR = 1.0 THR = 1.05 THR = 1.1 

accuracy was so slight. A more conservative strategy would be to accept the 
additive model if its GCV score is only slightly (say 5 or 10 percent) worse. The 
second and third columns of Table 5 show the number of times the additive 
model is chosen under these two slightly more conservative scenarios. In these 
cases the fit involving interactions is seen to be almost never chosen. 

The results of this simulation study indicate that on data for which the true 
underlying function f (1) is additive, the MARS procedure does not produce 
fits involving interactions that appear distinctly superior to an additive model. 
This basically is another test of the lack-of-fit criterion (30), (311, (32) and 
especially the choice of d = 3 (32) for general MARS modeling and d = 2 for 
additive modeling with MARS [Friedman and Silverman (1989)l. 

4.3. A simple function of ten variables. The previous examples (Sections 
4.1 and 4.2) tested the ability of MARS to avoid finding structure when it is 
not present. It is at  least equally important that it find structure when it does 
exist. The next several examples examine the ability of MARS to uncover 
interaction effects that are present in data. The first test example is taken 
from Friedman, Grosse and Stuetzle (1983). They considered trying to model 
the function 

in the six-dimensional unit hypercube using N = 200 points. The covariates 
were randomly generated from a uniform distribution and the responses were 
assigned using (57) with f(x) given by (61) and with E being a standard 
normal deviate. 

We consider here this same function (61) but in a more difficult setting. 
First we reduce the sample size to N = 100. In addition we increase the 
dimensionality of the covariate space to n = 10, so that instead of one noise 
variable, there are now five such variables that are independent of f(x). For 
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TABLE6 

Summary of the MARS model for the data of Section 4.3* 


Fun. a \GCV #Basis #Palms Variableh) 

1 0.56 0.67 1 2.8 4 
2 0.29 0.087 1 2.8 2 
3 0.50 0.26 1 2.8 1 
4 0.28 0.21 1 2.8 5 
5 0.30 0.22 2 5.7 3 
6 0.46 0.37 4 11.3 1 2 
7 0.064 0.059 1 2.8 2 6 

*GCV (piecewise-linear) = 0.059; GCV (piecewise-cubic) = 0.055; total number of basis functions 
= 11; total effective number of parameters = 32.3. ANOVA decomposition. 

this study however, the MARS procedure has no prior knowledge of the nature 
of the dependence of f(x)on any of the variables. The signal-to-noise ratio for 
this example is high (4.8/1); the true underlying function accounts for 96% of 
the variance of the response. On the other hand, the dimension of the 
covariate space is high ( n  = 101, the sample is small ( N = 100) and the 
function (61) is fairly highly structured. 

Table 6 summarizes the MARS model derived from a data set generated 
from the previous prescription. The data response values were standardized so 
that the resulting GCV scores are an estimate of the PSE (59). The table 
caption gives the optimizing GCV scores for the corresponding piecewise linear 
(23) and piecewise cubic (Section 3.7) fits, the total number of (nonconstant) 
basis functions M in the final model, and C(M) (31), (32), the estimated 
number of linear degrees of freedom used in the fit. The ANOVA decomposi- 
tion is summarized by one row for each ANOVA function. The columns 
represent summary quantities for each one. The first column lists the function 
number. The second gives the standard deviation of the function. This gives 
one indication of its (relative) importance to the overall model and can be 
interpreted in a manner similar to a standardized regression coefficient in a 
linear model. The third column provides another indication of the importance 
of the corresponding ANOVA function, by listing the GCV score for a model 
with all of the basis functions corresponding to that particular ANOVA 
function removed. This can be used to judge whether this ANOVA function is 
making an important contribution to the model, or whether it just slightly 
helps to improve the global GCV score. The fourth column gives the number of 
basis functions comprising the ANOVA function while the fifth column pro- 
vides an estimate of the additional number of linear degrees of freedom used 
by including it. The last column gives the particular predictor variables 
associated with the ANOVA function. 

The MARS fit is seen in Table 6 to have produced seven ANOVA functions, 
the first five involving only one variable (K,= 1)and two comprised of two 
variables (K,= 2). Judging from the second and (especially) the third columns, 
the last ANOVA function (involving an interaction between variables 2 and 6) 
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is not very important to the fit. Its standard deviation is much smaller than 
that of the other ANOVA functions and removing it from the fit degrades the 
GCV score for the entire fit imperceptibly (see caption). All other ANOVA 
functions seem important to the mgdel in that the removal of any of them 
substantially degrades the quality of the fit. 

After removing the unneeded (seventh) ANOVA function, the resulting 
MARS model is seen to be additive in variables 3, 4 and 5, and involves a 
two-variable interaction effect between variables 1and 2. Note that this model 
shows no indication of a dependence of the response on the last five (pure 
noise) variables. Figure 4 shows a graphical representation of these ANOVA 
functions. The three additive contributions f4(x4), f5(x5) and f3(x3) (25) are 
plotted in the first three frames. The joint contribution of the first two 

FIG.4. ANOVA functions for the MARS model of Example 4.3. 
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variables f,T,(x,, x,) (27) is presented in three different views of a perspective 
mesh plot of this function (last three frames). Low values of the corresponding 
variables are indicated by the position of the 0, whereas higher values are in 
the direction of the axis label. Note that the plotting routine does not show the 
bivariate function outside the convex hull of the projected data points. As 
discussed in Section 3.7, the MARS procedure basically extrapolates linearly 
beyond the boundaries of the data. It is important to note that this surface 
does not represent a smooth of y on x, and x,, but rather it shows the 
contribution of x, and x, to a smooth of y on the ten variables x,, . . . ,x,,. 

Comparing the results of the MARS fit to these data (Table 6 and Figure 4) 
with the true underlying function f(x) (61), shows that the resulting model 
provides a fairly accurate and interpretable description. This is especially 
noteworthy given the high dimensionality ( n  = 10) and the small sample size 
( N  = 100). 

Table 6 (and Figure 4) show results for one realization of a data set .vith 
N = 100. In order to assess the general ability of MARS to model data of this 
kind, it must be applied to a large number of realizations of this situation. 
Table 7 summarizes the results of running MARS on 100 replications of this 
example at  three sample sizes ( N  = 50, 100 and 200), in the same format as 
Table 4. (Here the strategy of choosing the additive fit if it produced a better 
GCV score was not used for the mi = 2,10 models.) For the very smallest 
sample size ( N  = 501, the additive model (mi = 1) is seen to actually produce 
more accurate fits than those involving interactions (mi = 2,101, even though 
there are strong interaction effects (involving x, and x,) in the generated data. 
This is due to the bias-variance tradeoff. Even though the additive model is 
highly biased, its lower variance leads to lower estimation errors. When the 
sample size is increased, however, this is no longer the case and the models 

TABLE7 

Results of applying MARS to 100 data sets, at three sample sizes N ,  for the situation described in  


Section 4.3 


ISE PSE GCV / PSE 
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FIG.5. Schematic diagram of the alternating current series circuit for Example 4.4.  

involving interactions produce vastly superior accuracy. As in the additive case 
(Table 41, the optimized GCV criterion is seen to overestimate the actual PSE 
on average (again with fairly high sample-to-sample variability). I t  is interest- 
ing to note that even though the true underlying function (61) exhibits 
interactions involving only two variables, the totally unconstrained MARS fit 
(mi = 10) produces models nearly as accurate as when the fit is constrained to 
have at most two-variable interactions (mi = 2). 

4.4. Alternating current series circuit. Figure 5 shows a schematic dia- 
gram of a simple alternating current series circuit involving a resistor R, 
inductor L and capacitor C. Also in the circuit is a generator that places a 
voltage 

( 6 2 4  Vab= V, sin wt 

across the terminals a and b. Here w is the angular frequency which is related 

to the cyclic frequency f by 


(62b) w = 2%-f. 

The electric current Iab that flows through the circuit is also sinusoidal with 

the same frequency, 


( 6 2 ~ )  lab= (K/Z)sin(wt - 4 ) .  


Its amplitude is governed by the impedance Z of the circuit and there is a 

phase shift 4 ,  both depending on the components in the circuit: 


Z = Z ( R ,  o, L ,  C) ,  

4 = 4 ( R , w , L , C ) .  

From elementary physics one knows that 


4 ( R ,  w, L , C )  = tan-' I 
The purpose of this exercise is to see to what extent the MARS procedure can 
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approximate these functions and perhaps yield some insight into the variable 
relationships, in the range 

0 jR I 100 ohms, 
20 I f I 280 hertz, 

0 5 L 5 1henries, 

15 C 5 11microfarads. 

Two hundred four-dimensional uniform covariate vectors were generated in 
the ranges (64). For each one, two responses were generated by adding normal 
noise to (63a) and (63b). The variance of the noise was chosen to give a 3 to 1 
signal-to-noise ratio for both Z (63a) and 4 (63b), thereby causing the true 
underlying function to account for 90% of the vzh-iance in both cases. As with 
the previous example, the data response values were standardized. 

4.4.1. IMPEDANCE Applying MARS to the impedance data (63a), (64) Z. 
(with 3/1 signal to noise) gave an optimizing GCV score of 0.19. The corre- 
sponding GCV scores for an additive model (mi = 1) was 0.56, whereas that 
for mi = 2 was 0.19. The additive model is seen (not surprisingly from the 
known truth) to be inadequate. Perhaps more surprising is the fact that even 
though the true underlying function (63a) has interactions to all orders, an 
approximation involving at most two-variable interactions gives just as good a 
fit to these data. Owing to its increased interpretability we select the mi = 2 
model. 

Table 8 summarizes the (mi = 2) MARS fit. There are five ANOVA func- 
tions all of which, except for the last, seem important to the model. There is an 
additive contribution from R and interactions between wC and w L. Figure 6 
displays a graphical representation of the ANOVA decomposition. The upper 
left frame shows the additive contribution fR(R) (251, the upper right shows 
the joint contribution of o and C, f,*c(w, C) (271, while the bottom two frames 
show f,*,(o, L) (27) from two different perspectives. 

The dependence of the impedance Z (62) on the resistance R of the circuit 
is seen to be roughly linear. Its joint dependence on o and C is seen to be 
fairly mild except when they both achieve simultaneously very low values, in 

TABLE8 

Summary of the MARS model for the alternating current series circuit impedance Z* 


Fun. u \GCV #Basis #Parms Variablek) 

*GCV (piecewise-linear) = 0.21; GCV (piecewise-cubic) = 0.19; total number of basis functions = 

9; total effective number of parameters = 31.0; ANOVA decomposition. 
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FIG.6. ANOVA functions of the MARS model for the alternating current series circuit impedance 
2,Section 4.4.1. 

which case the impedance increases very sharply. For low frequencies w, the 
impedance Z is seen to be high and independent of the inductance L. For high 
w, Z has a monotonically increasing dependence on L. For low L, Z monotoni-
cally decreases with increasing w, whereas for high L values, the impedance is 
seen to achieve a minimum for moderate w. These interpretations are based on 
visual examination of the graphical representation of the ANOVA decomposi- 
tion of the MARS model, based on a sample of size N = 200. Since the data 
are in this case generated from known truth, one can examine the generating 
equation (63a) to verify their general correctness. 

Table 9 summarizes the results of a simulation study based on 100 replica- 
tions of AC circuit impedance data (63a), (64) (3/1 signal to noise) at three 
sample sizes (-N = 100, 200 and 400). Additive modeling (mi = 1) is seen to 
perform badly at  all sample sizes. The accuracy of the models involving 
interactions improves sharply with increasing sample size. The mi = 2 models 
offer slightly higher accuracy in most situations. Unlike the previous examples, 
the GCV score is seen to underestimate the true predictive squared error PSE 
(59) a little on average. 

4.4.2 PHASEANGLE 9. The MARS procedure applied to the phase angle 
data (63b), (64) (3/1 signal to noise) with mi = 1 ,2 ,4  gave optimizing GCV 
scores of 0.30, 0.22 and 0.22, respectively. Here the additive model, while still 
being less accurate, is more competitive with those involving interactions. The 
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TABLE9 

Results of applying MARS to 100 data sets, at each of three sample sizes N ,  for the alternating 


current impedance Z example 


ISE PSE GCV / PSE 

model limited to two-variable interactions (mi = 2) is again seen to fit the data 
as well as the general (mi = 4) MARS model. Table 10 summarizes the mi = 2 
model. It involves nine ANOVA functions, two of which are clearly unimpor- 
tant (6 and 7) and three more that are of marginal importance (5, 8 and 9). 
Figure 7 shows perspective mesh plots of all six bivariate functions f * (27) 
associated with the four variables. The dependence of the phase angle cp on all 
of the variables is seen to be more gentle and more nearly additive than the 
impedance Z (Figure 6). 

Table 11gives the results of applying MARS to 100 replications of the phase 
angle data at  N = 100, 200 and 400. At the smallest sample size, additive 
fitting is seen to be almost as accurate as with interactions. This is, however, 

TABLE10 
Summary of the MARS model for the alternating current series circuit phase angle cp* 

Fun. u \GCV #Basis #Parms Variablek) 

1 0.45 0.32 2 5.6 w 
2 0.86 0.34 2 5.6 C 
3 0.62 0.38 2 5.6 L 
4 0.42 0.26 3 8.4 R C 
5 0.23 0.21 1 2.8 W L 
6 0.12 0.19 1 2.8 L C 
7 0.14 0.19 1 2.8 W C 

;. 8 0.28 0.22 1 2.8 R L 
9 0.24 0.23 1 2.8 R w 

*GCV (piecewise-linear) = 0.19; GCV (piecewise-cubic) = 0.22; total number of basis functions = 

14; total effective number of parameters = 40.2; ANOVA decomposition. 
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FIG.7 .  ANOVA functions of the MARS model for the alternating current series circuit phase 
angle cp, Section 4.4.2. 

TABLE11 

Results of applying MARS to 100 data sets, at each of three sample sizes N ,  for the alternating 


current phase angle cp example 


ISE PSE GCV / PSE 
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TABLE12 

Measured variables for the Portuguese olive oil data 


C16:O palmitic acid 
C16:l palmitoleic acid 
C17:O heptadecanoic acid 
C17:l heptadecenoic acid 
C18:O stearic acid 
C18:l oleic acid 
C18:2 linoleic acid 
C18:3 linolenic acid 
C20:O eicosanoic acid 
C24:O lignoceric acid 
Beta-sitosterol 
Carnpesterol 
Stigmasterol 

no longer true at  the larger sample sizes. The optimizing GCV score is seen to 
slightly underestimate the true PSE (on average) for most of the situations, 
but as with the previous examples, the variance of the ratio (GCV/PSE) 
dominates this small bias. 

4.5. Portuguese olive oil. For this example, MARS is applied to data from 
analytical chemistry. The observations consist of 417 samples of olive oil from 
Portugal [Forina, Armanino, Lanteri, Calcagno and Tiscornia (1983)l. On each 
sample, measurements were made on the concentrations of 10 acids and three 
sterols (see Table 12). Also recorded was the location where the sample 
originated. The purpose was to see if there is a relation between the chemical 
composition and geographical origin. Of particular interest was the extent to 
which olive oil from northeastern Portugal (Douro Valley-90 samples) dif- 
fered from that of the rest of Portugal (327 samples). One way to address this 
question is to examine the results of trying to model the probability that a 
sample originates from the Douro Valley given its measured chemical composi- 
tion (Table 12). The response variable y in this case takes on only two values: 
1= Duoro Valley, 0 = rest of Portugal. Since Pr(y = 11x1 = E(ylx), one can 
estimate this probability through regression techniques. 

Linear logistic regression [Cox (1970)l is often used when the response 
variable assumes only two values. The model takes the form 

n 


log[p/(l  - P)I = Po + C @,xi, 
i = l  


where p is the probability that y assumes its larger value. The coefficients 
{Pi): are estimated by (numerically) maximizing the likelihood of the data. 
as tie and Tibshirani (1986) extended this approach to additive logistic regres- 

sion 
n 
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The smooth covariate functions are estimated through their local scoring 
algorithm. The model can be further generalized to involve potential interac- 
tion effects by a 

with f(x) taking the form of the MARS approximation. This can be imple- 
mented in the MARS algorithm by simply replacing the internal linear least- 
squares routine (LOF-Algorithm 2, line 7 and Algorithm 3, lines 2 and 5) by 
one that does linear logistic regression (given the current set of multivariate 
spline basis functions). Unless rapid updating formulae can be derived, this is 
likely to be quite computationally intensive. A compromise strategy, however, 
is likely to provide a good approximation; the multivariate spline basis func- 
tions are selected using the MARS squared-error-based loss criterion, and the 
coefficients {a,}? for the final model are fit csing a linear logistic regression 
on this basis set. In this mode, one takes advantage of the local variable subset 
selection aspect of MARS as well as its ability to produce continuous models. 
The detailed knot placement on the selected variables will, however, be opti- 
mally placed for the untransformed response rather than for the logistic fit. 

Table 13 gives the results of six different analyses (rows) on the Portuguese 
olive oil data set. The first column describes the method. The first two rows 
are for MARS runs on the untransformed 0/1 response using its least-squares 
criterion. The next two rows give results when a post (linear) logistic regres- 
sion is applied to the final basis function set as described earlier. The parame- 
ter mi is (as before) the maximum number of variables permitted in any basis 
function (mi = 1gives an additive model; mi = 2 allows two variable interac- 
tions). The last two rows are (respectively) ordinary stepwise linear logistic 
regression and recursive partitioning [CART: Breiman, Friedman, Olshen and 
Stone (1984)l. The second column gives the number of variables that entered 
each final model; the third column gives the GCV estimate of the PSE (59); the 
fourth column gives another estimate of this quantity (CV) based on 10-fold 

TABLE13 
Portuguese olive oil 

Method #Vars GCV CV Error (CV) 

MARS ( m i  = 1) 3 0.23 0.21 0.050 
(least-squares) 

MARS ( m i  = 2 )  3 0.19 0.20 0.038 
(least-squares) 

MARS ( m i  = 1)  3 0.16 0.19 0.036 
(logistic) 

MARS ( m i  = 2)  3 0.13 0.16 0.026 
(logistic) 

linear logistic 4 0.25 0.26 0.070 
(stepwise) 
CART 2 - 0.22 0.058 



cross-validation; and the last column gives the cross-validated error rate of a 
prediction rule that assigns 9 = 1 if the estimated conditional probability 
~ ( y l x )is greater than 0.5 and assigns 9 = 0 otherwise. In the case of logistic 
regression, the GCV and CV sdres  were computed using as a (squared-error) 
loss function 

with ?(XI the corresponding MARS estimate of the log-odds (65). 
Table 13 indicates that the (post) logistic transformation improves the fit 

substantially. The GCV and CV estimates are seen to be fairly close, especially 
for the (untransformed) least-squares fits. The introduction of interaction 
effects (mi = 2) seems to improve the quality of the fit, especially for the 
logistic models. (Increasing the value for mi beyond 2 did not result in further 
improvement.) CART and stepwise linear logistic regression do not perform as 
well as the logistic MARS model involving two variable interactions on these 
data, although (like MARS) they do indicate a strong association between 
geographical origin (Douro Valley versus rest of Portugal) and the chemical 
composition (Table 12) of the olive oil samples. This (strong) association can be 
expressed with a small fraction of the 13 original predictor variables. [When 
using GCV or CV scores for comparisons it should be remembered that they 
not only estimate the accuracy of the approximation (2), (3) but also include 
the irreducible (binomial) error. Therefore their ratios understate the actual 
accuracy ratios of the methods being compared.] 

Table 14 provides a summary of the logistic (mi = 2) MARS model. There 
are four ANOVA functions involving three (of the 13) predictor variables. All 
four ANOVA functions appear important to the fit, including the last two that 
involve interactions. Figure 8 shows the joint contribution (to the log-odds) of 
the second and twelft,h variables f,T,,(x,, x,,) (27) in the upper left frame and 
fCl2(x6, x12) in the upper right frame. The two lower frames show the same 
two plots, respectively, from a different perspective. The MARS model for the 
log-odds is (in this case) the sum of these two bivariate functions. 

4.6. Low dimensional modeling. The main advantage of MARS modeling 
over existing methodology is clearly realized in high dimensional settings. I t  is, 

TAEILE14 

Summary of the ( m i  = 2) logistic MARS model for the Portuguese olive oil example* 


Fun \GCV #Basis #Parms Variablek) 

*Piecewise-linear: GCV = 0.10, CV = 0.15; piecewise-cubic: GCV = 0.13, CV = 0.15; total num- 
ber of basis functions = 9; total effective number of parameters = 29.5; ANOVA decomposition. 



MULTIVARIATE ADAPTIVE REGRESSION SPLINES 

FIG.8. ANOVA functions for the log-odds MARS model on the Portuguese olive oil data, 
Section 4.5. 

however (unlike recursive partitioning), competitive in low dimensions (n  I 2) 
as well. Friedman and Silverman (1989) studied its properties for the nonpara- 
metric smoothing problem (n  = 1) and showed that it can produce superior 
performance especially in situations involving small samples and low signal to 
noise. [They also showed that for additive modeling (13) (n  > 1, mi = 11, it is 
quite competitive with procedures based on the backfitting algorithm using 
local averaging smoothers.] In the univariate case (n  = I), the MARS method 
can be viewed as a modification of an approach first suggested by Smith (1982). 
In a massive simulation study, Breiman and Peters (1988) ghowed that this 
was one of the best all around smoothers of those they tested. 

In this section, we illustrate the use of MARS for two-dimensional nonpara- 
metric smoothing (n = 2). The first example is taken from Andrews and 
Herzberg (1985). The data comes from an experiment on the recoiling of guns 
[Brouncker (1734)l. A total of 109 shots were fired at  different distances D 
between the muzzle and the target and with varying grains of powder in the 
charge C. The upper left frame of Figure 9 shows the experimental design. 
Note that there are 40 distinct points in the design so that some points 
represent more than one firing. The response variable is the (standardized) 
distance by which the resulting shot missed the target. 

The MARS procedure applied to these data resulted in a model with three 
basis functions and an optimized GCV score of 0.39. The upper right and lower 
left frames of Figure 9 show two views of the MARS surface smooth. The 
average shooting error is seen to increase linearly with shooting distance for 
all powder charges. As might be expected, at the shortest distance, the error is 
very small and independent of the size of the powder charge. As the distance 
increases, the dependence of the shooting error on charge becomes nonmono- 
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FIG.9. Experimental design (upper left) and MARS surface smooth for the gun recoil data, first 
example, Section 4.6. 

tonic with the degree of nonmonotonicity increasing with shooting distance. 
The optimal (lowest shooting error) charge is seen to increase somewhat as the 
distance increases. This error is seen to be asymmetric about the minimum 
with the degree of asymmetry increasing with distance. For moderate to large 
distances it appears to be much more costly (in terms of average accuracy) to 
shoot with too small a powder charge than with one that is too large. 

Our second example is an artificial one used by Gu, Bates, Chen and Wahba 
(1990) to illustrate interaction spline smoothing (see Section 2.3). They gener- 
ated 300 points (more or less) randomly from a uniform distribution in the 
unit square and set the response to 

The errors E~ were drawn from a standard normal distribution. Here the 
signal to noise is 3.15/1 so that the true underlying function accounts for 
about 91% of the variance of the response. Figure 10 shows a mesh plot of the 
true underlying function y - E (66) over the unit square. 
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True underlying function [equation (6611 for the second example, Section 

The optimized MARS model on these data consisted of 18 basis functions 
using an estimated 45 linear degrees of freedom for the fit. The corresponding 
surface estimate is shown in Figure 11. Although this estimate is a bit 
smoother than the one produced by interaction splines [see Gu, Bates, Chen 
and Wahba (1990), Figure 41, they both have nearly the same accuracy in 
terms of expected squared error (3), (29). Since this is a relatively well-behaved 

V 


FIG.11. MARS surface smooth for second example, Section 4.6. 
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function and the sample size is quite large ( N  = 300), it is likely that methods 
based on kernel smoothing [Cleveland and Devlin (1988)l and (nonadaptive) 
tensor product splines [de Boor (197811 would also do well in this case. 

Although MARS is competitive with other methodologies in low dimensions, 
what sets it apart is its ability to handle problems involving many variables. 
Suppose the variables (x,, x,) in (66) were two out of ten variables, all of which 
(jointly) effect the response y in an unknown way, and the goal is to estimate 
the dependence of the response on x,, x,, accounting for the effect of the other 
eight (nuisance) variables x,, . . . ,x,,. To get an idea of how well MARS might 
do in such a problem, N = 300 points were generated in the n = 10 dimen- 
sional unit hypercube. The dependence of this response j j  was taken to be 

(67) . f i = ~ i + f ( x , ) ,  . 
with y, given by (66) and f(x) given by (61) (shifted by two arguments). Thus, 
the dependence of j j  on the first two variables is the same as in the previous 
two-dimensional example, whereas its dependence on the last eight is the same 
as the first eight variables of the problem studied in Section 4.3. The sample 
size ( N  = 300) and the pure noise level are the same as in the two-dimensional 
problem. The apparent noise in the x,x,-plane is now however many times 
greater owing to the variability induced in the response by the many nuisance 
variables. I t  is hoped that one can account for the variance associated with the 
nuisance variables by fitting a (nonparametric) model jointly with respect to 
them and the variables of interest, thereby obtaining a better estimate of the 
dependence of the response on x,, x,. 

Applying MARS to this 10-dimensional data resulted in a model with 27 
basis functions using an estimated 68.5 linear degrees of freedom. Eleven of 
the basis functions were associated with the dependence on variables x, and 
x,, accounting for 27.5 linear degrees of freedom. Figure 12 shows the result- 
ing surface estimate. Although it is not quite as accurate as the smooth 
(Figure 11) produced in the absence of the eight nuisance variables, it still 
gives a good indication of the nature of the joint dependence of the response on 
x, and x,. The estimate (Figure 12) is smoother than that of Figure 11owing 
to the fact that it is based on 11 rather than 18 basis functions. Figure 13 
shows plots of all the ANOVA functions produced by the MARS fit to the 
10-dimensional data. The estimates corresponding to the (nuisance) variables 
associated with f(x) (61), (67) are actually better than those obtained in the 
example of Section 4.3. This is the result of having 300 observations h?re, 
whereas only 100 were used in Section 4.3. 

4.7. Slicing a MARS model. In the examples presented so far, the domi- 
nant interactions involved at  most two variables. The resulting MARS models 
could then be visualized through plots of the contributing ANOVA functions 
(251, (27). When substantial interaction effects involving more than two vari- 
ables are present, the model becomes more difficult to interpret. This section 
describes an interpretational tool called slicing that can aid in the visualization 
of such models. 
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FIG. 12. MARS surface smooth for the second example, Section 4.6, i n  the presence of eight 
highly structured nuisance variables. 

The MARS model (23), (34) is a sum of products of univariate functions 

Here bkmis either a q = 1spline basis function (33) or its cubic analog (34). If 
the number of factors K m  in any product is greater than two, then f(x) is 
more difficult to interpret since the ANOVA decomposition (24) contains 
functions of more than two variables which are difficult to plot or visualize. It 
is possible, however, to get a rough idea of the behavior of f(x) by reducing the 
dimensionality of the predictor variable space by repeatedly conditioning on 
subsets of the variables. 

Let Z represent a (selected) subset of the predictor variables ( 2 ,  . . . x,), 
with dimension d ( < n )  and z the complement subset of dimension n - d .  
Define a d-dimensional slice of the predictor variable space by simultaneously 
assigning specific values to the selected variables 

(69) slice: {Z, = z,, . . . ,Z, = z,) = Z = z. 

The MARS model along the slice will be a function of the variables 2 
complement to those defining the slice 

The particular form of the MARS model (68) makes the sliced model (70) 
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l 

FIG. 13. ANOVA functions for the ten-variable version of the second example in  Section 4.6. 

especially straightforward to compute by decomposing its products into those 
factors involving variables defining the slice, and those involving the comple- 
ment variables, 

For a given slice (Z = z), the first product in (71) evaluates to a constant 
(inultiplying the coefficient a,) and the second product gives the dependence 
on the complement variables. The MARS model along the slice can therefore 
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be represented as 

with 

The sum in (72b) is over all basis functions in,(68), (71) that involve only 
variables defining the slice. The sum in (72c) is over all basis functions that 
involve exactly the same complement variables {z,,,, ,,). 

For a given slice (69), the MARS model along the slice (72a) has the same 
(constructive) form as any ordinary MARS model (68) and thus has a corre- 
sponding ANOVA decomposition that can be interpreted graphically as illus- 
trated in the previous sections. This suggests the following strategy for trying 
to visualize models that contain interactions involving more than two vari- 
ables: 

1. Use the ANOVA decomposition of the full MARS model f(x) (24) to identify 
those variables that participate in interactions with more than one other 
variable. 

2. Choose a variable subset Z for slicing, such that the MARS model along the 
slice f ( ~ l z )  involves (at most) two-variable interactions. 

3. Examine graphically the ANOVA decomposition (25), (27) of ~ ( Z J Z )for 
various values of the slice (Z = 2). 

This slicing strategy is illustrated on testing data taken from a semiconduc- 
tor component. The predictor variables V, . . . V, are the simultaneous voltages 
applied to the terminals of a four terminal semiconductor resistor in the 
ranges -6  I V, I 6, -0.75 IV' I 10.75 and -0.5 I (V,, V,) 5 5.5. The re- 
sponse is the current I into one of the terminals. There were 599 observations 
taken. Table 15 provides a summary of the results of four MARS runs on these 
data. The first column gives the maximum number of variables mi allowed to 
participate in interactions. The second column gives the GCV estimate (30), 
(32) of the (59) and the third gives another estimate of this quantity 
based on 10-fold cross-validation. The last three columns give, respectively, the 
median, 75th percentile and maximum values of the distribution of the 
absolute cross-validated residuals divided by the absolute deviation of 
the response from its mean value. Table 15 shows results only for piecewise- 
linear fits; in all cases the corresponding piecewise-cubic models gave rise to 
much larger values and thus worse fits. 

Increasing the permissible interaction level is seen to improve the general 
quality of the fit. The GCV score appears to rather dramatically underestimate 



TABLE15 

MARS on semiconductor data, piecewise-linear fits-see Section 4.7 


Cross-validation (10-reps) 

GCV 
I) Residual distribution 

mi @ @ med. 0.75 max. 

the PSE as estimated from cross-validation. Inspection of the (cross-validated) 
residual distributions reveals that they are highly skewed toward large values. 
The GCV score is seen to reflect the size of the typical residuals (median-75% 
point) but not the few extremely large ones. Increasing the interaction level 
beyond two seems to preferentially reduce the larger residuals. 

Figure 14 shows a graphical representation of the ANOVA decomposition 
for the MARS model involving only two-variable interactions (mi = 2). The 

FIG.14. MARS model for semiconductor component data restricted to two-variable interactions 
( m i  = 2). 
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max = 1.0 

max = ,065 
max = .19 

FIG.15. Full ( m i  = 4)  MARS model for semiconductor component data. Functions of V ,  and V, 
along various slices defined by V3and Vq. 

resistor is seen to be a very nonlinear devick. The current appears to be 
roughly independent of the terminal voltages except when one or more of them 
take on extreme values where the current changes rapidly. 

As seen in Table 15, the MARS model involving four-variable interactions 
provides a substantially better fit to these data. Figures 15 and 16 explore this 
function of four variables using the slicing strategy described before. Figure 15 
shows the current as a function of Vl and V, along four slices defined by V3 
and V,. In this figure, the functions are not plotted on the same vertical scale. 
In order to relate the scales, the maximum value of each function relative to 
that of the first (upper left frame) is shown above each plot. Since the relative 
locations of the plots are arbitrary, they are each plotted to have a minimum 
value of zero, so that the maximum value is equal to the range. The (V3, V,) 
slices are taken at  the four extreme corners of the V3 - V, design. Both the 
magnitude and shape of the dependence of the current on Vl and V, are seen 
to depend rather strongly on the values of V3 and V,. For simultaneously low 
values of V3 and V, (upper left), the dependence is seen to be roughly linear, 
whereas when V, takes on its highest value, with V3 at  its lowest value (lower 
left), the current is seen to vary much less as a function of V, and V,. For high 
values of V3, the dependence is similar to that of the lower left frame except 
for the existence of the dramatic peak for low values of V,. 
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FIG.16. Full ( m i  = 4)  MARS model for semiconductor component data. Functions of V3and V4 
along several slices defined by V, and V,. 

Figure 16 shows the dependence of the current (as reflected by the MARS 
fit) on V3 and V, for four slices on (V,, V,). Here the slices do not include the 
two extreme corners on V, for low values of V2 since they are outside the 
support of the design. (This can be seen on the V1 - V2 plots; the functions are 
plotted only within the convex hull of the bivariate distributions.) In Figure 
16, the functions are all plotted on the same scale. As would be expected from 
the previous results, the dependence of the current on V3 and V, changes 
substantially with differing values of V, and V,. 

Exploring the resulting MARS model in this manner provides some insight 
into the nature of the cross-validated residual distributions observed in Table 
15. The function has very high (and increasing) first and second derivatives 
very near some of the (joint) boundaries. When extreme observations on these 
boundaries are deleted during the cross-validation, the resulting slopes are 
underestimated and the extrapolation to the left-out observation gives rise to a 
large error. This phenomenon also explains why the piecewise-linear models 
give rise to much better fits. There are clearly small local regions where the 
second derivatives are very large. By approximating these by infinite second 
derivatives, the piecewise-linear model is able to come closer than the piece- 
wise-cubic fit which tries to moderate these locally very high second deriva- 
tives. 

Figures 15 and 16 represent a small subset of all possible revealing slices of 
this four-variable function. In general, slicing is likely to be most effective 
when performed in an interactive manner. Functional dependencies revealed 
by inspecting the results of a particular slice will likely suggest further slices to 
try. The straightforward and rapid calculation of sliced models (72) from the 
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complete MARS model (681, (71) might make feasible the computation of sliced 
functions in real time on modern workstations. In this case the values defining 
the slice could be defined (and changed) in a continuous manner through a 
graphical input device (such as %y moving a mouse) and the continuously 
changing functions along the slice can be viewed in real time. 

5. Remarks. This section covers various aspects (extensions, limitations, 
etc.) of the MARS procedure not discussed in the previous sections. 

5.1. Constraints. The MARS procedure is nonparametric in that it at- 
tempts to model arbitrary functions. It is often appropriate, however, to place 
constraints on the final model, dictated by knowledge of the system under 
study, outside the specific data at hand. Such cohstraints will reduce the 
variance of the model estimates and if the outside knowledge is fairly accurate, 
not substantially increase the bias. One type of constraint has already been 
discussed in Section 4, namely limiting the maximum interaction order (mi) of 
the model. Setting this maximum to a small value (mi _< 2) causes the 
resulting (restricted) model to be more interpretable since its ANOVA compo- 
nents (Section 3.5) can be directly visualized graphically. With this restriction, 
the MARS model has the same form as a low dimensional expansion (additive 
model, interaction splines-see Section 2.3;. Unlike those methods however, 
which require the variable subsets to be preselected (in advance), MARS 
automatically selects them separately for each problem at  hand based on the 
data. I t  also automatically (and adaptively) selects the (different) degree of 
smoothing to be applied in estimating the separate functions of each of the 
variable subsets it produces. In situations where this adaptability is not 
important, one might apply MARS to obtain the low dimensional variable 
subsets (ANOVA decomposition) and then apply a less adaptive smoothing 
method [kernel with the backfitting algorithm or interaction splines (12)l on 
these subsets to obtain the final function estimates. 

One might in addition (or instead) limit the specific variables that can 
participate in interactions. If it is known a priori that certain variables are not 
likely to interact with others, then restricting their contributions to be at  most 
additive can improve accuracy. If one further suspects that specific variables 
can only enter linearly, then placing such a restriction can improve accuracy. 
The incremental charge d (32) for knots placed under these constraints should 
be less than that for the unrestricted knot optimization. (The implementing 
software charges 2d/3 and d/3, respectively, for the additive and linear 
constraints where d is the charge for unrestricted knot optimization.) 

These constraints, as well as far more sophisticated ones, are easily incorpo- 
rated in the MARS strategy. Before each prospective knot is considered 
(Algorithm 2, lines 6-81, the parameters of the corresponding two new poten- 
t i 4  multivariate spline basis functions (v, t and B,) can be examined for 
consistency with the constraints. If they are inconsistent, they can be made 
ineligible for inclusion in the model by simply skipping lines 6-8 in Algo- 
rithm 2. 
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5.2. Semiparametric modeling. Another kind of a priori knowledge that is 
sometimes available has to do with the nature of the dependence of the 
response on some (or all) the predictor variables. The user may be able to 
provide a function g(x) that i ~ ~ t h o u g h t  to capture some aspects of the true 
underlying function f(x). More generally, one may have a set of such func- 
tions {gj(x));', each one of which might capture some special aspect of the 
functional relationship. A semiparametric model of the form 

where {(x) takes the form of the MARS approximation, could then be fit to the 
data. The coefficients c j  in (73) are jointly fit along'with the parameters of the 
MARS model in Algorithms 2 and 3. To the extent that one or more of the gj 
successfully describe attributes of the true underlying function, they will be 
included with relatively large (absolute) coefficients and the accuracy of the 
resulting (combined) model will be improved. 

Semiparametric models of this type (73) are easily fit using the MARS 
strategy. One simply includes {gj(x));! as J additional predictor variables 
( x ,+~ ,. . . ,x , + ~ )  and constrains their contributions to be linear. One could 
also, of course, not place this constraint, thereby fitting more complex semi- 
parametric models than (73). 

Another strategy that is often employed in this context is to first fit only the 
parametric component to the data and then apply a nonparametric method 
(such as MARS) to the residuals of the parametric fit. In general, this strategy 
is likely to be less successful because the residual function may be more highly 
structured than the original one (and thus more difficult to approximate) 
especially if the parametric approximation is not close to the true underlying 
function. The more general approach (73) allows the fitting procedure to 
automatically adjust the strength of the parametric components as part of the 
fitting process. 

5.3. Collinearity. Extreme collinearity of the predictor variables is a fun- 
damental problem in the modeling of observational data. Solely in terms of 
predictive modeling, it represents an advantage in that it effectively reduces 
the dimensionality of the predictor variable space. This is only true provided 
that the observed collinearity is a property of the population distribution and 
not an artifact of the sample at  hand. Collinearity presents, on the other hand, 
severe problems for interpreting the resulting model. 

This problem is even more serious for (interactive) MARS modeling than for 
additive or linear modeling. Not only is it difficult to isolate the separate 
contributions of highly collinear predictor variables to the functional depen- 
dence, it is also difficult to separate the additive and interactive contributions 
among them. A highly nonlinear dependence on one such (highly correlated) 
variable can be well-approximated by a combination of functions of several of 
them and/or by interactions among them. 
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In the context of MARS modeling, one strategy to cope with this (added) 
problem is to fit a sequence of models with increasing maximum interaction 
order (mi). One first fits an additive model (mi = I), then one that permits at  
most two variable interactions (mi = 2) and so on. The models in this se- 
quence can then be compared by means of their respective optimizing GCV 
scores. The one with the lowest mi value that gives a (relatively) acceptable fit 
can then be chosen. 

Another (complementary) strategy is to directly resolve the ambiguity by 
enforcing parsimony on the number of variables that enter the model 
[Friedman and Silverman (1989)l. This will discourage spurious interaction 
effects caused by collinearity (or concurvity) and, in addition, partially stabilize 
the function estimates. I t  will also aid in interpretation in that the resulting 
approximation will involve fewer variables. 

Variable parsimony can be accomplished by introducing a small incremental 
penalty to the lack-of-fit criterion for choosing factors (knots) that involve 
introducing a new variable (not already in the model) as part of the forward 
stepwise procedure (Algorithm 2, line 7): 

At the Mth  iteration, there are M - 1basis functions currently in the model 
and the indicator function in (74) will be zero if the uth variable appears in at  
least one of them; otherwise it will be equal to one. The parameter y (> 0) 
regulates the strength of the penalty for entering new variables and can be 
used to control the lack-of-fit/variable parsimony tradeoff. Note that this 
penalty (74) is only introduced as part of the (forward stepwise) knot selection 
process and it is not used to reflect the overall lack-of-fit of the model. 

In highly collinear settings the (unmodified) lack-of-fit criterion (LOF(g)) 
has very little preference on which particular variable to enter from a highly 
correlated set and a small value for y will cause the modified criterion (74) to 
repeatedly enter the same one from that set, without seriously degrading the 
quality of the approximation. A good value for y depends on the particular 
situation (degree of collinearity) and how much goodness-of-fit the user is 
willing to sacrifice for variable parsimony. This can be judged by examining the 
resulting fit quality for several (increasing) values of y as reflected by either 
the final GCV score (30) or a sample reuse method. 

We illustrate these two approaches on data taken from the Places Rated 
Almanac [Boyer and Savageau (198611. They rated 329 American cities on the 
nine criteria listed in Table 16. For this exercise we attempt to model housing 
cost (y = x2)on the other eight criteria. Table 17 shows the resulting number 
of variables and GCV estimate (30) of the PSE (59) for running MARS with 
different values of y (74). The first three rows are for additive modeling 
(mi = 1) and the second three for models with two variable interactions 
permitted (mi = 2). The models involving interactions are seen to not be 
distinctly superior to the additive ones, so that using the first strategy (shown 



TABLE16 
The nine criteria used to rate U.S.  cities by the Places Rated Almanac 

climate 
housing costs 

d 


health care and environment 
crime rate 
transportation 
education 
access t o  the  arts 
recreational opportunities 
economics 

earlier) one would be inclined to choose the latter. As the value of y (74) is 
steadily increased, MARS produces models with progressively fewer variables, 
as one would expect. For these particular data, however, one is able to reduce 
the number of variables from (nearly) the full set (at y = 0) to only three 
(0.05 Iy < 0.15) without seriously degrading the quality of the fit as esti- 
mated by the solution GCV score. Note that this GCV score (30) does not 
reflect the additional penalty imposed by setting y > 0, so that differences 
between scores involving larger and smaller values of y underestimate (on 
average) their actual differences. Ordinary cross-validation (CV) does account 
for this increased penalty. For example, the CV estimate (10 replications) for 
the y = 0 (mi = 1) model is 0.56 whereas the corresponding score for y = 0.1 
is 0.52. 

Figure 17 shows the graphical ANOVA decomposition for the three-variable 
additive model produced for 0.05 Iy < 0.15. From this analysis it appears 
that average (increasing) housing costs are most strongly affected by increas- 
ingly good climate (especially for the highest values) and are associated to a 
somewhat lesser degree with economic conditions and access to the arts. The 
dependence on climate might be somewhat surprising since in these data 
housing costs reflect utility bills, which are likely to decrease with good 
climate, as well as taxes and mortgage payments. Any interpretations, how- 

TABLE17 

The number of variables and corresponding GCV score for a sequence of MARS models on the 


Placed Rated data, produced by increasing thepenalty y (74) for adding variables 


m i  = 1 
Y 0 0.01 0.02 0.03 0.05 0.10 0.15 
#vars 7 7 7 4 3 3 2 
GCV 0.49 0.49 0.49 0.50 0.51 0.51 0.58 

mi  = 2 
Y 0 0.01 0.02 0.05 0.07 0.10 0.15 
#vars 8 6 5 5 4 3 2 
GCV 0.48 0.50 0.48 0.47 0.51 0.51 0.58 
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climate the arts 


economics 


FIG.17. Graphical ANOVA decomposition of the three variable additive MARS model on the 
Places Rated data, Section 5.3. 

ever, must be tempered by the existence of the collinearities present in the 
design and the fact that the model is estimated to account for only 50% of 
the variance of the response. 

5.4. Robustness. Since the MARS method as described here uses a model 
selection criterion based on squared-error loss, it is not robust against outlying 
response values. There is nothing fundamental about squared-error loss in the 
MARS approach. Any criterion can be used to select the multivariate spline 
basis functions, and construct the final fit, by simply replacing the internal 
linear least squares fitting routine (LOF-Algorithm 2, line 7 and Algorithm 3, 
lines 2 and 5) by one that minimizes another loss criterion (given the current 
set of multivariate spline basis functions). Using robust/resistant linear re- 
gression methods would provide resistance to outliers. The only advantage to 
squared-error loss in the MARS context is computational. It is difficult to see 
how rapid updating formulae (Section 3.9) could be developed for other types 
of linear regression. 
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Gross outliers (in both the response and covariates) that can be detected 
through a preliminary (exploratory) analysis of the data, should be considered 
for removal before applying MARS. The MARS procedure is less sensitive than 
linear regression to covariate outliers owing to the local nature of the fit; 
sample covariate vectors far from an evaluation point tend to have less rather 
than more influence on the model estimate. Covariate outliers can have a 
strong influence on the fit near the corresponding data boundaries. This can be 
quite helpful if the corresponding response values for the outliers are correctly 
measured. If not, these outliers will contribute to end effect errors. 

Recursive partitioning responds to outlying respcnse values by trying to 
isolate them. It produces a series of splits so as to place each such outlier in its 
own region. This localizes the effect of the outlier(s) so that they only distort 
the fit for covariate values close to that of the outlier(s). The MARS procedure 
operates similarly. It will also try to isolate outliers through a series of 
corresponding splits producing basis functions that attempt to capture the 
(apparent) high curvature of the function near each outlier. The outliers will 
tend to heavily influence the values of the coefficients of their corresponding 
basis functions, but have much less influence on the rest of the fit. The 
particular basis functions introduced in this manner by outlying response 
values may tend to involve interactions of high order depending on their 
location in the covariate space. Thus, interpreting the presence of interaction 
effects can be highly distorted by the existence of outlying response values. 

Computationally feasible methods of robustifying the MARS procedure are 
currently under investigation. 

6. Conclusion. The aim of the MARS procedure is to combine recursive 
partitioning and spline fitting in a way that best retains the positive aspects of 
both, while being less vulnerable to their unfavorable properties. This has been 
accomplished, at  least to some extent. The greatest strength of recursive 
partitioning is its adaptability, through its local variable subset selection 
strategy. This makes it a highly dynamic computation (Section 2.4) capable of 
tracking the dependencies associated with a wide variety of complex functional 
forms. The two weaknesses of recursive partitioning are the lack of continuity 
of its models and its inability to capture simple relationships such as linear, 
additive or interactions of low order compared to n .  Nonadaptive (tensor 
product) spline fitting produces continuous models with continuous deriva- 
tives. I t  strongly suffers, however, from the curse-of-dimensionality in that 
very large basis function sets are usually required in high dimensions to 
capture relatively simple functional relationships. 

The MARS procedure completely retains the adaptability of recursive parti- 
tioning by its close adherence to the recursive splitting paradigm (compare 
Algorithms 1 and 2). It is in fact much more adaptive because it permits the 
recursive splitting of all basis functions (nodes) in the model and not just those 
that are currently terminal. This causes it to overcome the second problem 
(mentioned in the previous paragraph) associated with recursive partitioning. 
I t  produces continuous models by replacing the step functions (19), (20) by 
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q = 1truncated power spline basis functions (211, (22). Continuous derivatives 
are obtained through the strategy outlined in Section 3.7. From the point of 
view of tensor product spline methods, MARS can be viewed as a hierarchical 
forward/backward stepwise subset: selection procedure for choosing a subbasis 
appropriate for the problem at  hand, from the complete (q = 1) truncated 
power tensor product basis with knots at every (distinct) marginal data value. 
MARS models have a fair degree of interpretability through the ANOVA 
decomposition (Section 3.5) that breaks up the approximation into an additive 
component and into interaction contributions of various orders. 

Slicing (Section 4.7) can be used to explore the higher dimensional aspects 
of the models. 

The implementation of the adaptive regression spline strategy presented 
here represents a first attelzpt in that particular 'choices have been made 
concerning many of the engineering details in the absence of a great deal of 
experience with the procedure. Although incidental to the fundamental ideas, 
these details can have a strong bearing on performance. As experience is 
gained, it is likely that many of the choices taken here will be seen to be less 
than optimal and suitable modifications will emerge that improve the perfor- 
mance of the procedure. The attempt here has been to demonstrate that the 
adaptive regression spline strategy, first introduced by Smith (1982) (in the 
univariate setting), holds substantial promise as a tool for multivariate func- 
tion estimation. 

A FORTRAN program implementing the MARS procedure is available from 
the author. 
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DISCUSSION 

University of Illinois 

1. Introduction. We describe the multivariate adaptive polynomial syn- 
thesis (MAPS) method of multivariate nonparametric regression and compare 
it to the multivariate adaptive regression spline (MARS) method of Friedman 
(1990). Both MAPS and MARS are specializations of a general multivariate 
regression algorithm that builds hierarchical models using a set of basis 
functions and stepwise selection. We compare polynomial and spline bases in 
this context. Our experience is that there is no substantial difference in the 
statistical accuracy for the data sets that we have investigated, provided that 
some care is taken in the choice of the model selection criterion. I t  is argued 
that the polynomial methods, with a smaller set of basis functions to select 
from at each step, should yield a computationally faster algorithm. 


